郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Proceedings of the 20th International Conference on Artificial In ...
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication Efficient Learning of Deep Networks from Decentralized Data, in Proceedings of the th International Conference on Artifici ...
2022-02-21 20:55 0 1496 推荐指数:
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Proceedings of the 20th International Conference on Artificial In ...
主要内容: 不同于梯度压缩和模型压缩,FedBoost集成学习算法,能够降低服务器到客户端 和客户端到服务器的通信成本,提高通信效率。 集成学习:集成学习(ensemble learning)原理详解_春华秋实-CSDN博客_集成学习 主要优点: 1. ...
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding,” Advances ...
一、阐述了联邦学习的诞生背景: 在当前数据具有价值,并且需要被保护,数据分布为non-IID情况下,需要提出一个框架来进行行之有效的训练,这也是联邦学习诞生的原因; 二、论文的相关工作: 首先,论文阐述了联邦学习所适用的领域: 1.数据集应该具有较大隐私,所以无法上传; 2. ...
代码: github.com/cbfinn/maml github.com/cbfinn/maml_rl Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ...
Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧,因为很早就对模型压缩比较感兴趣,所以抽了个时间看了一篇,代码也自己实现了一下,觉得还是挺容易 ...
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于《SCIENCE 》的论文,也是这篇论文揭开了深度学习的序幕。 笔记 摘要:高维数据可以通过一个多层神经网络把它编码 ...
本篇文章发表在ICLR2020上,对动态图的进行连接预测和结点分类。TGN中,作者除利用传统的图神经网络捕捉非欧式结构生成embedding外,还利用动态图所中时序信息。 T ...