原文:五折交叉验证/K折交叉验证, python代码到底怎么写

五折交叉验证: 把数据平均分成 等份,每次实验拿一份做测试,其余用做训练。实验 次求平均值。如上图,第一次实验拿第一份做测试集,其余作为训练集。第二次实验拿第二份做测试集,其余做训练集。依此类推 但是,道理都挺简单的,但是代码我就不会写,比如我怎么把数据平均分成 份 我怎么保证每次实验的时候,数据都是这么划分的 本来一般的训练时,把数据按 : : 分成训练集 验证集和测试集,在训练集上训练图像, ...

2021-12-10 10:06 0 1686 推荐指数:

查看详情

K交叉验证

交叉验证的思想   交叉验证主要用于防止模型过于复杂而引起的过拟合,是一种评价训练数据的数据集泛化能力的统计方法。其基本思想是将原始数据进行划分,分成训练集和测试集,训练集用来对模型进行训练,测试集用来测试训练得到的模型,以此来作为模型的评价指标。 简单的交叉验证   将原始数据D按比例划分 ...

Sun Jun 02 04:59:00 CST 2019 0 2668
K交叉验证

在机器学习领域,特别是涉及到模型的调参与优化部分,k交叉验证是一个经常使用到的方法,本文就结合示例对它做一个简要介绍。 该方法的基本思想就是将原训练数据分为两个互补的子集,一部分做为训练数据来训练模型,另一部分做为验证数据来评价模型。(以下将前述的两个子集的并集称为原训练集,将它的两个互补子集 ...

Wed Feb 12 23:00:00 CST 2020 0 5041
k交叉验证

k交叉验证(R语言) 原创: 三猫 机器学习养成记 2017-11-26 “ 机器学习中需要把数据分为训练集和测试集,因此如何划分训练集和测试集就成为影响模型效果的重要因素。本文介绍一种常用的划分最优训练集和测试集的方法——k交叉验证。” k交叉验证 ...

Wed Jun 06 04:47:00 CST 2018 0 6938
K交叉验证

k 交叉验证k-fold cross validation) 静态的「留出法」对数据的划分方式比较敏感,有可能不同的划分方式得到了不同的模型。「k 交叉验证」是一种动态验证的方式,这种方式可以降低数据划分带来的影响。具体步骤如下: 将数据集分为训练集和测试集,将测试集放在一边 将训练集 ...

Sat Sep 25 04:14:00 CST 2021 0 138
K交叉验证的目的

K交叉验证,其主要 的目的是为了选择不同的模型类型(比如一次线性模型、非线性模型),而不是为了选择具体模型的具体参数。比如在BP神经网络中,其目的主要为了选择模型的层数、神经元的激活函数、每层模型的神经元个数(即所谓的超参数)。每一层网络神经元连接的最终权重是在模型选择(即K交叉验证)之后 ...

Wed Sep 16 01:54:00 CST 2020 0 932
k交叉验证KFold()函数的使用

KFold(n_split, shuffle, random_state)   参数:n_splits:要划分的数      shuffle: 每次都进行shuffle,测试集中数的总和就是训练集的个数      random_state:随机状态 from ...

Thu Mar 19 05:15:00 CST 2020 0 1690
K交叉验证法的Python实现

学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k交叉验证法和自助法。介绍这两种方法的资料有很多。下面是k交叉验证法的python实现。 Python中貌似没有自助法 ...

Thu Feb 01 22:55:00 CST 2018 0 10835
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM