就这个东西看了好久才看懂,我在想啥啊 结论:相似矩阵的特征多项式相同。 证明:代入定义式即可。 \(A\) 与 \(B\) 相似也就是存在可逆矩阵 \(P\) 使得 \(A=P^{-1}BP\)。 只要在对 \(A\) 做初等行变换的时候,同时左乘上它的逆,就可以维持相似性。具体实现背代码 ...
矩阵: 求其最小多项式: 首先求A的特征多项式: 右上边的定义可知,最小多项式可能是下列两种情况之一: 根据本节来时的讨论知最小多项式p满足p A 将A分别带入上边两个多项式: 于是最小多项式为: ...
2021-12-02 21:42 0 5401 推荐指数:
就这个东西看了好久才看懂,我在想啥啊 结论:相似矩阵的特征多项式相同。 证明:代入定义式即可。 \(A\) 与 \(B\) 相似也就是存在可逆矩阵 \(P\) 使得 \(A=P^{-1}BP\)。 只要在对 \(A\) 做初等行变换的时候,同时左乘上它的逆,就可以维持相似性。具体实现背代码 ...
零化多项式/特征多项式/最小多项式/常系数线性齐次递推 约定: \(I_n\)是\(n\)阶单位矩阵,即主对角线是\(1\)的\(n\)阶矩阵 一个矩阵\(A\)的\(|A|\)是\(A\)的行列式 默认\(A\)是一个\(n\times n\)的矩阵 定义 零化多项式 ...
定义 矩阵\(A\)的次数最低的、最高次数为\(1\)的化零多项式称为\(A\)的最小多项式。 定理 设 \(m(x)\),\(C(x)\) 分别是矩阵\(A\)的最小多项式和特征多项式,则 \(m(x)|C(x)\),并且,对 \(\lambda_0\in C\)(这里\(C\)指复数域 ...
crv_fit.h //多项式曲线拟合 f(x)=a0+a1x+a2x^2+a3x^3+...anx^n class Crv_fit { public : Crv_fit(void); void clear(void); //~Crv_fit(void); public ...
背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a、b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整。于是转变了解决问题的方式:采用了最小二乘法做 ...
最近在分析一些数据,就是数据拟合的一些事情,用到了matlab的polyfit函数,效果不错。 因此想了解一下这个多项式具体是如何拟合出来的,所以就搜了相关资料。 这个文档介绍的还不错,我估计任何一本数值分析教材上讲的都非常清楚。 推导就不再写了,我主要参考下面两页PPT,公式和例子讲 ...
文章没有写完,近期填完这坑 参考文章: https://www.luogu.com.cn/blog/froggy/duo-xiang-shi-tai-za-hui https://www.cnb ...
。 它的实质是离散情况下的最小平方趋近,基本思想和处理方法也具有相似性。其几何解释是:求一条曲 ...