参考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g 1、数据集下载地址 https://tianchi-competition.oss- ...
摘要:本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比。 本文分享自华为云社区 基于Keras RNN的文本分类vs基于传统机器学习的文本分类 ,作者: eastmount 。 一.RNN文本分类 .RNN 循环神经网络英文是Recurrent Neural Networks,简称RNN。RNN的本质概念是利用时序信息,在传统神经网络中,假设 ...
2021-11-30 11:51 0 102 推荐指数:
参考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g 1、数据集下载地址 https://tianchi-competition.oss- ...
文本分类的定义 文本分类是现在非常热门的一个研究领域,也是机器学习中最为重要最为基础的组成部分。文本分类有各种各样的方法,有些简单易懂,有些看上去非常复杂。其实只要搞清楚他们背后的原理,理解文本分类并不是一件很困难的事情。今天先从宏观上介绍一下文本分类,后续会在其他博文中分门别类对文本分类 ...
文本分类实现步骤: 定义阶段:定义数据以及分类体系,具体分为哪些类别,需要哪些数据 数据预处理:对文档做分词、去停用词等准备工作 数据提取特征:对文档矩阵进行降维、提取训练集中最有用的特征 模型训练阶段:选择具体的分类模型以及算法,训练出文本分类器 评测阶段:在测试集上测试 ...
机器不学习 jqbxx.com -机器学习、深度学习好网站 在最左边的输出层有两个channel,每个channel是一个二维的矩阵,矩阵的列的长度等于语句sentence的长度(也就是sentence中的单词个数,通过padding使得待分类的每个sentence都有相同的长度 ...
学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。 一 引言 ...
上一篇博客复习了贝叶斯决策论,以及生成式模型的参数方法。本篇就给出一个具体的例子:朴素贝叶斯分类器应用于文本分类。后面简单谈了一下文本分类的方法。 (五)朴素贝叶斯分类器(Naïve Bayes) 既然说到了朴素贝叶斯,那就从信息检索的一些概念开始说起好了 ...
前言: 上一篇比较详细的介绍了卡方检验和卡方分布。这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行。然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了。 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 ...
目录 一、监督式分类:建立在训练语料基础上的分类 特征提取器和朴素贝叶斯分类器 过拟合:当特征过多 错误分析 二、实例:文本分类和词性标注 文本分类 词性标注:“决策树”分类器 三、更近一步 ...