pytorch单机多卡训练 训练 只需要在model定义处增加下面一行: 载入模型 如果是多GPU载入,没有问题 如果训练时是多GPU,但是测试时是单GPU,会出现报错 解决办法 ...
一 启动训练的命令 python m torch.distributed.launch nproc per node NUM GPUS YOU HAVE train.py 其中torch.distributed.launch表示以分布式的方式启动训练, nproc per node指定一共就多少个节点,可以设置成显卡的个数 二 启动之后每个进程可以自动获取到参数 import argparse ...
2021-11-23 09:48 0 1103 推荐指数:
pytorch单机多卡训练 训练 只需要在model定义处增加下面一行: 载入模型 如果是多GPU载入,没有问题 如果训练时是多GPU,但是测试时是单GPU,会出现报错 解决办法 ...
需求 对基于pytorch的深度学习模型进行多卡训练以加速训练过程 由于显卡版本过于老旧,安装配置NCCL工程量过于庞大,希望使用简单的pytorch代码实现单机多卡训练,不考虑多机多卡的显卡通信 训练完成后保存的checkpoint需要能够在任何设备上进行加载、推理 实现 ...
1. 导入库: 2. 进程初始化: 添加必要参数 local_rank:系统自动赋予的进程编号,可以利用该编号控制打印输出以及设置device world_size:所创建的进程数, ...
一. torch.nn.DataParallel ? pytorch单机多卡最简单的实现方法就是使用nn.DataParallel类,其几乎仅使用一行代码net = torch.nn.DataParallel(net)就可让模型同时在多张GPU上训练,它大致的工作过程如下图所示: 在每一个 ...
前一篇博客利用Pytorch手动实现了LeNet-5,因为在训练的时候,机器上的两张卡只用到了一张,所以就想怎么同时利用起两张显卡来训练我们的网络,当然LeNet这种层数比较低而且用到的数据集比较少的神经网络是没有必要两张卡来训练的,这里只是研究怎么调用两张卡。 现有方法 在网络上查找了多卡 ...
PyTorch分布式训练详解教程 scatter, gather & isend, irecv & all_reduce & DDP 本文将从零入手,简单介绍如何使用PyTorch中的多种方法进行分布式训练。 具体而言,我们将使用四种方法,分别是: (1)scatter ...
为init_method="env://"(默认的环境变量方法) # 单机多卡并行计算示例 import ...
转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练,也就是简单的从保存的模型中加载参数权重 ...