注:本系列所有博客将持续更新并发布在github和gitee上,您可以通过github、gitee下载本系列所有文章笔记文件。 1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification ...
CART分类树算法 特征选择 我们知道,在ID 算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C . 算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID 还是C . ,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢 有 CART分类树算法使用基尼系数 来代替信息增益比,基尼系数代表了模 ...
2021-11-16 16:02 0 114 推荐指数:
注:本系列所有博客将持续更新并发布在github和gitee上,您可以通过github、gitee下载本系列所有文章笔记文件。 1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification ...
机器学习领域的决策树,但却是第一个有着复杂的统计学和概率论理论保证的决策树(这些话太学术了,引自参考文 ...
一、分类树构建(实际上是一棵递归构建的二叉树,相关的理论就不介绍了) 二、分类树项目实战 2.1 数据集获取(经典的鸢尾花数据集) 描述: Attribute Information: 1. sepal length in cm 2. sepal width ...
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一、决策树(Decision Tree)、口袋(Bagging),自适应增强(AdaBoost) Bagging和AdaBoost算法再分 ...
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点。 决策树:是一种基本的分类和回归方法。在分类问题中,是基于特征对实例进行分类。既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布。 决策树模型:决策树由结点 ...
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。 CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3 ...
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器。决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规则进行递归(可以理解为嵌套的 if - else 的条件判断过程),关于递归的终止条件有三种 ...