FFT 快速傅里叶变换学习笔记 前言 由于老吕以及 dsr 巨巨的讲解,将FFT学习了一下可能以后很大几率都用不到,为了防止自己忘了,趁自己还有点记忆总结一下,可能理解的不深,或有错误,请不吝赐教。 定义 快速傅里叶变换 (fast Fourier transform), 即利用 ...
背景 据说是高斯发明的 考虑从六年级开始学的多项式相乘,需要将所有项相乘并打开,时间复杂度 O n .FFT能在 O nlogn 时间复杂度内解决这一问题.由于整数可以被拆成系数与进制幂之积的和,所以大整数乘法也可以用FFT加速. 表示法 一种显然的加速方式:在学习拉格朗日插值的过程中我们已经发现,n 个点可以确定一个n次的多项式.所以两个n次多项式相乘可以通过取n 次值,再把值乘起来的方式实现. ...
2021-11-07 08:32 0 111 推荐指数:
FFT 快速傅里叶变换学习笔记 前言 由于老吕以及 dsr 巨巨的讲解,将FFT学习了一下可能以后很大几率都用不到,为了防止自己忘了,趁自己还有点记忆总结一下,可能理解的不深,或有错误,请不吝赐教。 定义 快速傅里叶变换 (fast Fourier transform), 即利用 ...
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式 ...
本文讲述的是快速离散傅里叶变换的递归版,并非倍增版。 零、前言 参考: 具体学习并实现快速傅里叶变换 - 鹤翔万里 洛谷日报 71:傅里叶变换 (FFT) 学习笔记 - command_block 在这里特别感谢。 代码中的 ll 是 long long,有在代码之前 ...
==== €€£ WARNING ==== 这篇博文内容相对偏少, 已经在后续博文中扩充. 大家可以看我的最新博文 [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT ...
一、引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为“系数表示法”,一个多项式是由其系数确 ...
FFT学得还是有点模糊,原理那些基本还是算有所理解了吧,不过自己推这个推不动。 看的资料主要有这两个: http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform ...
题目链接 3122. 多项式乘法同P3803 【模板】多项式乘法(FFT) 3122. 多项式乘法 题目描述 给定一个 \(n\) 次多项式 \(F(x)=a_0+a_1x+a_2x_2+…+a_nx_n\)。 以及一个 \(m\) 次多项式 \(G(x ...
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq。 卷积 卷积、旋积或褶积(英语:Convolution)是通过两个函数 \(f\) 和 \(g\) 生成第三个函数的一种数学算子。 定义 设 ...