详细理论部分可参考https://www.cnblogs.com/wanghui-garcia/p/10862733.html BCELoss()和BCEWithLogitsLoss()的输出logits和目标labels(必须是one_hot形式)的形状相同 ...
. 定义 数学公式为 Loss w p log q p log q ,其中p q分别为理论标签 实际预测值,w为权重。这里的log对应数学上的ln。 PyTorch对应函数为: torch.nn.BCELoss weight None, size average None, reduce None, reduction mean 计算目标值和预测值之间的二进制交叉熵损失函数。 有四个可选参数:w ...
2021-11-04 21:20 0 1389 推荐指数:
详细理论部分可参考https://www.cnblogs.com/wanghui-garcia/p/10862733.html BCELoss()和BCEWithLogitsLoss()的输出logits和目标labels(必须是one_hot形式)的形状相同 ...
torch.nn.init.normal(tensor, mean=0, std=1) 从给定均值和标准差的正态分布N(mean, std)中生成值,填充输入的张量或变量 参数: tensor – n维的torch.Tensor mean – 正态分布的均值 std – 正态分布的标准差 ...
torch.nn.init.uniform(tensor, a=0, b=1) 从均匀分布U(a, b)中生成值,填充输入的张量或变量 参数: tensor - n维的torch.Tensor a - 均匀分布的下界 b - 均匀分布的上界 ...
torch.nn.init.constant(tensor, val) 用val的值填充输入的张量或变量 参数: tensor – n维的torch.Tensor或autograd.Variable val – 用来填充张量的值 ...
loss=torch.nn.MSELoss w=np.array([1.0,2.0,3.0]) w1=np.array([1.0,2.0,2.0]) print(loss(torch.tensor(w),torch.tensor(w1))) 输出值了0.333。 输出表明loss损失函数 ...
PyTorch快速入门教程七(RNN做自然语言处理) - pytorch中文网 原文出处: https://ptorch.com/news/11.html 在pytorch里面实现word embedding是通过一个函数来实现的:nn.Embedding # -*- coding ...
自定义层Linear必须继承nn.Module,并且在其构造函数中需调用nn.Module的构造函数,即super(Linear, self).__init__() 或nn.Module.__init__(self),推荐使用第一种用法,尽管第二种写法更直观。 在构造函数 ...
该教程是在notebook上运行的,而不是脚本,下载notebook文件。 PyTorch提供了设计优雅的模块和类:torch.nn, torch.optim, Dataset, DataLoader,以创建和训练神经网络。为了充分利用其功能,并根据问题进行自定义,需要充分理解它们做的是什么 ...