本文介绍[初等]数论、群的基本概念,并引入几条重要定理,最后籍着这些知识简单明了地论证了欧拉函数和欧拉定理。 数论是纯粹数学的分支之一,主要研究整数的性质。 算术基本定理(用反证法易得):又称唯一分解定理,表述为 任何大于1的自然数,都可以唯一分解成有限个质数的乘积,公式:\(n=p_1 ...
图论 图的欧拉定理 前置 平面图的定义:若简单图 G V,E 能画在平面上使得任意两条无重合顶点的边不相交,则称 G平面图 Planar Graph 。 有些复杂的图可以通过调换点的位置或者线的排布来使得其化简成一眼就可以看清是平面图的图,而有些图是没有办法形成平面图的 图的欧拉定理的描述 V E F ,其中V为这张图的点数,E为边数,F为面数 图的欧拉定理的推导 采用数学归纳法 当图中只有一个 ...
2021-11-02 23:35 0 155 推荐指数:
本文介绍[初等]数论、群的基本概念,并引入几条重要定理,最后籍着这些知识简单明了地论证了欧拉函数和欧拉定理。 数论是纯粹数学的分支之一,主要研究整数的性质。 算术基本定理(用反证法易得):又称唯一分解定理,表述为 任何大于1的自然数,都可以唯一分解成有限个质数的乘积,公式:\(n=p_1 ...
欧拉定理及其证明[补档] 一.欧拉定理 背景:首先你要知道什么是欧拉定理以及欧拉函数。 下面给出欧拉定理,对于互质的a,p来说,有如下一条定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 这就是欧拉定理 二.剩余系 定义:对于集合\(\{k*m+a|k ...
扩展欧拉定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...
我真的很逊,所以有错也说不定。 这篇很简,所以看不懂也说不定。 总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。 欧拉定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 费马小定理:\(a^{p-1 ...
欧拉定理 【前言】 欧拉定理挺好玩的。但是一般就用来优化模算术下的乘方运算,没啥意思。不过它的性质比较有意思,在很多模算术带乘方的玩意里有奇效。更何况欧拉函数其本身就比较神奇。 前置技能:容斥,数论基础,同余基础。 【欧拉函数】 欧拉函数\(\varphi(n)\)表示\(1\sim n ...
定义 如果正整数 \(n\) 和 整数 \(a\) 互质,那么就有 \[a^{\varphi \left( n \right)}\equiv 1\ \left( mod\ n \right) \] 其中欧拉函数\(\varphi \left( n \right ...
欧拉函数 \(\varphi(n) \ or \ \phi(n)\) 表示小于n的正整数与n互质的数的个数. 性质: 当n为质数时 \(\varphi(n)=n-1\) 当n为奇数时 \(\varphi(2n) = \varphi(n)\) 证明: \(\because\)欧拉函数为积性函数 ...