◆版权声明:本文出自胖喵~的博客,转载必须注明出处。 转载请注明出处:https://www.cnblogs.com/by-dream/p/10088976.html 前言 之前在测试建模分析中讲过决策树的概念,这里要说的机器学习的决策树在构建上和最终目的与之前的决策树是有一些 ...
决策树 基本概念 信息量 度量一个事件的不确定性程度,不确定性越高则信息量越大,一般通过事件发生的概率来定义不确定性,信息量则是基于概率密度函数的log运算 I x log p x 信息熵 衡量的是一个事件集合的不确定性程度,就是事件集合中所有事件的不确定性的期望 begin aligned H x amp E x X I x amp E x X log p x amp sum x in X p ...
2021-11-02 19:39 0 190 推荐指数:
◆版权声明:本文出自胖喵~的博客,转载必须注明出处。 转载请注明出处:https://www.cnblogs.com/by-dream/p/10088976.html 前言 之前在测试建模分析中讲过决策树的概念,这里要说的机器学习的决策树在构建上和最终目的与之前的决策树是有一些 ...
决策树 ID3,C4.5,CART,决策树的生成,剪枝。 一、概述 决策树(decision tree)是一种基本的分类与回归方法(这里是分类的决策树)。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是 ...
0 通俗的理解 对于一个根据特征向量来对样本进行分类的问题,首先挑出一个最有价值的特征,对该特征进行提问,如样本颜色是什么;然后根据得到的不同回答,如红色、蓝色等,将数据集划分成子集 ...
前言 生活中有很多利用决策树的例子。西瓜书上给的例子是西瓜问题(讲到这突然想到书中不少西瓜的例子,难道这就是它西瓜封面的由来?)\。大致意思是,已经有一堆已知好瓜坏瓜的西瓜,每次挑取西瓜的一条属性,将西瓜进行分类。然后在分类的西瓜中,继续挑取下一条属性进行更加细致的划分,直到所有的属性被用完 ...
决策树是一种基本的分类和回归方法。本章主要讨论用于分类的决策树,决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数 ...
决策树是一种常见的机器学习模型。形象地说,决策树对应着我们直观上做决策的过程:经由一系列判断,得到最终决策。由此,我们引出决策树模型。 一、决策树的基本流程 决策树的跟节点包含全部样例,叶节点则对应决策结果。其它每个节点则对应一个属性测试,每个节点包含的样本集合根据属性测试结果被划分 ...
什么是决策树? 决策树是一种基本的分类与回归方法。其主要有点事模型具有可得性,分类速度快。学习时,利用训练数据,根据损失函数最小化原则建立决策树模型;预测时,对新数据,利用决策树模型进行分类。 决策树学习通常包含以下三个步骤: 选择特征 决策树生成 剪枝 ...
(注:本篇博文是对《统计学习方法》中决策树一章的归纳总结,下列的一些文字和图例均引自此书~) 决策树(decision tree)属于分类/回归方法。其具有可读性、可解释性、分类速度快等优点。决策树学习包含3个步骤:特征选择、决策树生成、决策树修剪(剪枝)。 0 - 决策树问题 0.0 ...