Matlab中LMI(线性矩阵不等式)工具箱使用教程 这一段被老板逼着论文开题,自己找方向比较着急,最后选择了供应链控制理论的一个方向。我要写的论文,用到了Matlab的LMI工具,以及某篇论文中的H-inf稳定定理。自己好好研究了好长时间,怎么也无 ...
目录 . Kronecker 积的定义及性质 . Kronecker 积在 LMI 中举例 . 形为 A bigotimes X lt 的 LMI . 形为 A bigotimes BX lt 的 LMI . 说明 参考文献 . Kronecker 积的定义及性质 如果 A, B 分别是阶数为 m times n, p times q 的矩阵, 那么 A 和 B 的Kronecker积 A bi ...
2021-10-29 19:25 1 1564 推荐指数:
Matlab中LMI(线性矩阵不等式)工具箱使用教程 这一段被老板逼着论文开题,自己找方向比较着急,最后选择了供应链控制理论的一个方向。我要写的论文,用到了Matlab的LMI工具,以及某篇论文中的H-inf稳定定理。自己好好研究了好长时间,怎么也无 ...
在了解空洞卷积时候发现了Kronecker convolution是对空洞卷积的改进,于是学习了一下 ,原文连接:1812.04945v1.pdf (arxiv.org) 个人理解如下: 首先,对于一个普通卷积,假设输入为A,A的大小为(Ha,Wa,Ca),卷积后的输出为B,B的大小为(Hb ...
若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{ ...
均值不等式 条件:\(a_i\ge0\)。 平方平均数:\(Q_n=\sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}}\) 算数平均数:\(A_n=\dfrac{\sum_{i=1}^{n}a_i}{n}\) 几何平均数:\(G_n=\sqrt[n]{a_1a_2 ...
反向。当且仅当x是常量时,该不等式取等号。 (2)举例 图2:Jensen不等式 图2中,实线f ...
不等式 $1$: $$a^{2} + b^{2} \geq 2ab$$ 从代数角度来证明: $$(a - b)^{2} \geq 0 \\\Rightarrow a^{2} -2ab + b^{2} \geq 0 \\\Rightarrow a^{2} + b^{2} \geq 2ab ...
将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论. Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩阵之和,要么与加边的 Hermite 矩阵有关. 定理1(Weyl): 设 ...