线代笔记 ——https://space.bilibili.com/88461692#/ 1.线性相关 (1)你有多个向量,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,相关术语称它们是“线性相关”的。另一种表述就是,这个向量可以表示为其它向量的线性组合,因为这个向量已经落在 ...
说明 课堂教的云里雾里,非常懵,其实线性代数的思路很简单 把细节忘了都行,把思路消化 矩阵就是向量的映射 矩阵就是向量的映射 矩阵就是向量的映射 也可以看做对空间的线性变换 类似f g x ,多个矩阵相继变换A B x 简写作ABx,即 x rightarrow B rightarrow A ABx 相似 一切的起始点 同一个线性变换,在不同的基下,是相似的 即若 PAP B ,A B相似,这步看 ...
2021-09-25 23:06 0 103 推荐指数:
线代笔记 ——https://space.bilibili.com/88461692#/ 1.线性相关 (1)你有多个向量,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,相关术语称它们是“线性相关”的。另一种表述就是,这个向量可以表示为其它向量的线性组合,因为这个向量已经落在 ...
什么是叉积 向量的叉积也叫外积、向量积、叉乘或矢量积。两个向量的叉积是这样表示的: 在二维空间内,向量A = <a1, a2>,B = <b1, b2> ...
简单来说,矩阵是充满数字的表格。 A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = ...
一维空间的投影矩阵 先来看一维空间内向量的投影: 向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更“贴近”线性代数的方式表达。 因为p趴在a上,所以p实际上是a的一个子空间,可以将它看作a放缩x倍,因此向量p可以用p ...
原文 | https://mp.weixin.qq.com/s/HrN8vno4obF_ey0ifCEvQw 奇异值分解(Singular value decomposition)简称SVD ...
特征值矩阵 假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么: 最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示: 没有人关心线性相关的特征向量,上式有意义 ...
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 什么是LU分解 如果有一个矩阵A,将A表示 ...
消元矩阵 如果用矩阵表示一个有解的方程组,那么矩阵经过消元后,最终能变成一个上三角矩阵U。用一个三元一次方程组举例: A经过一些列变换,最终得到了一个上三角矩阵U: 回代到 ...