1.学习的两种主流方式 专家系统与基于概率的系统最根本的区别就是:数据量的不同 数据量大则优先使用基于概率的系统;若数据量小或没有数据,则推荐使用专家系统。 2.专家系统介绍 专家系统的特点:能够处理不确定性、知识的表示、可解释性、可以做知识推理 3.机器学习入门介绍 ...
k近邻算法 KNN 定义:如果一个样本在特征空间中的k个最相似 即特征空间中最邻近 的样本中的大多数属于某一个类别,则该样本也属于这个类别。 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 优点: 简单,易于理解,易于实现,无需估计参数,无需训练 缺点: 懒惰算法,对测试样本分类时的计算量大,内存开销大 必须指定K值,K值选择不当则分类精度不能保证 使用场景:小数据场景,几千 几万 ...
2021-09-15 20:14 0 112 推荐指数:
1.学习的两种主流方式 专家系统与基于概率的系统最根本的区别就是:数据量的不同 数据量大则优先使用基于概率的系统;若数据量小或没有数据,则推荐使用专家系统。 2.专家系统介绍 专家系统的特点:能够处理不确定性、知识的表示、可解释性、可以做知识推理 3.机器学习入门介绍 ...
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数 ...
最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
的条件下都是条件独立的。 1、朴素贝叶斯朴素在哪里? 简单来说:利用贝叶斯定理求解联合概率P( ...
简介 朴素贝叶斯是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素贝叶斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素贝叶斯适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...
概率分类器: 朴素贝叶斯是一种直接衡量标签和特征质检的概率关系的有监督学习算法, 是一种专注分类的算法, 朴素贝叶斯的算法根源是基于概率论和数理统计的贝叶斯理论, 因此它是根正苗红的概率模型. 关键概念: 联合概率: X取值为x和Y的取值为y, 两个事件同时发生的概率, 表示 ...
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立。 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 贝叶斯公式可以写成: \[p ...
朴素贝叶斯中的朴素是指特征条件独立假设, 贝叶斯是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...