线性代数——高斯消元 第一板块 首先,我们先来讲解一下线性代数: 什么是线性代数? 函数研究的是,输入一个数,经过函数运算 后,产出一个数。而有时候我们研究的问题太复杂,需要输入多个数,经过运算后,就会产出多个数。这时候,线性代数应运而生。 多个数,我们可以用括号括起来,形成一个 ...
今天讲了线性代数,顺带复习了一下之前没有认真学的高斯消元以及矩阵求逆。 高斯消元: 考虑一个满秩的系数矩阵,它意味着有唯一解 而不存在唯一解的充要条件就是其行列式为 . 那么考虑如何求解方程组:用初等行变换的形式将矩阵消成上三角矩阵,从而我们得到了最后一个未知数的解,再进行回代即可。 也可以直接消成一个对角矩阵。这个地方是和求逆一一样的。 用 O n 可以完成高斯消元的过程,其中注意要确定用每次数 ...
2021-08-19 21:02 0 120 推荐指数:
线性代数——高斯消元 第一板块 首先,我们先来讲解一下线性代数: 什么是线性代数? 函数研究的是,输入一个数,经过函数运算 后,产出一个数。而有时候我们研究的问题太复杂,需要输入多个数,经过运算后,就会产出多个数。这时候,线性代数应运而生。 多个数,我们可以用括号括起来,形成一个 ...
符号说明: A 矩阵 U 行阶梯形矩阵 R 行最简形矩阵 消元(elimination) 示例: 对应矩阵: 首先消除第二行主元[1]: 第三行主元[1]已被消除,无需消元 ...
有多组测试数据。每组测试数据先输入一个整数n,表示方阵的阶。然后下面输入n阶方阵。输出其逆矩阵。若无逆矩阵,则输出No inverse matrix。 ...
消元矩阵 如果用矩阵表示一个有解的方程组,那么矩阵经过消元后,最终能变成一个上三角矩阵U。用一个三元一次方程组举例: A经过一些列变换,最终得到了一个上三角矩阵U: 回代到方程组后可以直接求解: 如果上面的变换去掉增广矩阵,可以简写为: 矩阵 ...
2.1 消元法 消元法,这个方法最早由高斯提出,也叫高斯消元法:是为了求解线性方程组的。应用消元法求解的时候,通常会应用以下三种变换,并且每一种变换都不会改变方程组的解: 交换方程组中任意两个方程的位置; 用一个数乘某一个方程的左右两边; 将一个方程的两边乘一个数然后加到另一 ...
自己随便写着玩的,时间复杂度O(n^3),小矩阵使用没什么问题,大矩阵……还是用openCV或者其他的一些线性代数库吧 高斯消元法具体内容自己google吧 头文件 cpp文件 测试用的main函数 ...
1. 消元的思想 针对下面的方程,我们无法直接得到方程的解。 \[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space+\space&2&y ...
1. 矩阵乘法 如果矩阵 \(B\) 的列为 \(b_1, b_2, b_3\),那么 \(EB\) 的列就是 \(Eb_1, Eb_2, Eb_3\)。 \[\boldsymbol{EB = E[b_1 \quad b_2 \quad b_3] = [Eb_1 \quad Eb_2 ...