老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明……),FFT老多人写,而MatrixTree没人证我就写一下吧…… Matrix Tree结论 Matrix Tree的结论 ...
引言 矩阵树定理是一个基于线性代数工具,解决图上生成树计数相关问题的工具。 最大的特点之一就是网上很多人都不会证明。 一些线代基础:矩阵,行列式等。 为什么要写这个证明呢 周围很多人认为比较浪费时间,一般不考。然而输入感知定理其中的智慧,不仅对于图论 线性代数有了更深入的了解,还可以为思维注入一些新鲜血液,因此对我个人而言不全是浪费时间之举。 基础定义 图的关联矩阵 对于一个 n 个点 第 i 个 ...
2021-08-06 22:09 0 161 推荐指数:
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明……),FFT老多人写,而MatrixTree没人证我就写一下吧…… Matrix Tree结论 Matrix Tree的结论 ...
本篇口胡写给我自己这样的什么都乱证一通的口胡选手 以及那些刚学Matrix-Tree,大致理解了常见的证明但还想看看有什么简单拓展的人… 大概讲一下我自己对Matrix-Tree定理的一些理解、常见版本的证明、我自己的证明,以及简单的一些应用(比如推广到有向图、推广到生成树边权的乘积 ...
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数。 看到给出图求生成树的这类问题就大概要往这方面想了。 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理,用\(A\)计算出生成树个数。 1.无向图 ...
Matrix-tree定理:对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。证明:https://blog.csdn.net/can919/article/details/86540819#_58 拉普拉斯矩阵 ...
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等。 首先,矩阵树定理用于求解一个图上的生成树个数。实现方式是:\(A\)为邻接矩阵,\(D\)为度数矩阵,则基尔霍夫(Kirchhoff)矩阵即为:\(K ...
简单入门一下矩阵树Matrix-Tree定理。(本篇目不涉及矩阵树相关证明) 一些定义与定理 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵 ...
定理内容:对于一个二分图,如果所有左边都小于等于右边,存在完备匹配,即所有左部点都被匹配。 必要性显然。充分性可以归纳。 设左部点为\(n\),\(n=1\)显然成立。 第一种情况,左边存在一个子集(不是全集)和右边对应的一样大,根据归纳假设,点集内部存在完美匹配。删掉这些点,如果出现了一个 ...