原文:CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数

CS 斯坦福大学机器学习复习材料 数学基础 线性代数 线性代数回顾与参考 基本概念和符号 . 基本符号 矩阵乘法 . 向量 向量乘法 . 矩阵 向量乘法 . 矩阵 矩阵乘法 操作及其性质 . 单位矩阵和对角矩阵 . 转置 . 对称矩阵 . 矩阵的迹 . 范数 . 线性相关性和秩 . 方阵的逆 . 正交矩阵 . 矩阵的值域和零空间 . 行列式 . 二次型和半正定矩阵 . 特征值和特征向量 . 对称 ...

2021-08-06 13:57 0 192 推荐指数:

查看详情

斯坦福CS229机器学习课程笔记一:线性回归与梯度下降算法

应该是去年的这个时候,我开始接触机器学习的相关知识,当时的入门书籍是《数据挖掘导论》。囫囵吞枣般看完了各个知名的分类器:决策树、朴素贝叶斯、SVM、神经网络、随机森林等等;另外较为认真地复习了统计学,学习线性回归,也得以通过orange、spss、R做一些分类预测工作。可是对外说自己是搞机器学习 ...

Thu Jul 16 22:26:00 CST 2015 0 3874
斯坦福大学机器学习笔记及代码(一)

(Notes and Codes of Machine Learning by Andrew Ng from Stanford University) 说明:为了保证连贯性,文章按照专题而不是原本的课程进度来组织。 零、什么是机器学习机器学习就是:根据已有的训练集D,采用学习算法A,得到 ...

Thu Apr 17 11:59:00 CST 2014 2 5314
斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在《数学之美》中提到,Google是利用逻辑回归预测搜索广告的点击率。因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么。幸好,在CS229第三节课介绍 ...

Thu Jul 16 23:11:00 CST 2015 0 4358
LR 算法总结--斯坦福大学机器学习公开课学习笔记

在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree) 一、模型和参数   模型指给定输入xi如何去预测 输出 yi。我们比较常见的模型如线性模型(包括线性回归和logistic ...

Sun Jul 21 23:30:00 CST 2019 0 401
斯坦福大学机器学习,EM算法求解高斯混合模型

斯坦福大学机器学习,EM算法求解高斯混合模型。一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量。从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型 ...

Tue Jun 06 09:33:00 CST 2017 0 3967
斯坦福CS229机器学习课程笔记六:学习理论、模型选择与正则化

稍微了解有监督机器学习的人都会知道,我们先通过训练集训练出模型,然后在测试集上测试模型效果,最后在未知的数据集上部署算法。然而,我们的目标是希望算法在未知的数据集上有很好的分类效果(即最低的泛化误差),为什么训练误差最小的模型对控制泛化误差也会有效呢?这一节关于学习理论的知识就是让大家知其然也知 ...

Thu Aug 27 01:20:00 CST 2015 0 2533
斯坦福CS229机器学习课程笔记五:支持向量机 Support Vector Machines

SVM被许多人认为是有监督学习中最好的算法,去年的这个时候我就在尝试学习。不过,面对长长的公式和拗口的中文翻译最终放弃了。时隔一年,看到Andrew讲解SVM,总算对它有了较为完整的认识,总体思路是这样的:1.介绍间隔的概念并重新定义符号;2.分别介绍functional margins ...

Fri Jul 31 21:48:00 CST 2015 0 1942
斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

课程设置和内容 视频课程分为20集,每集72-85分钟。实体课程大概一周2次,中间还穿插助教上的习题课,大概一个学期的课程。 内容涉及四大部分,分别是:监督学习(2-8集)、学习理论(9集-11集)、无监督学习(12-15集)、强化学习(16-20集)。监督学习和无监督学习,基本上是机器学习 ...

Sat Aug 27 07:11:00 CST 2016 4 1858
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM