高斯消元 高斯消元是对矩阵行化简的算法,可以化成阶梯型或者简化阶梯型。《线性代数及其应用》给出的步骤如下: 选取最左边的非零列; 在该列中任意选取一个非零元素,通过对换变换将该行移到最上面; 通过倍加变换将下面的行的该列元素全部变成 \(0\); 暂时不管该行(即第一 ...
. 行列式 . . 符号与定义 mathrm det A ,又记作 A ,等于 sum p tau p prod i nA i,p i ,其中 p 为 sim n 的排列, tau p 表示排列 p 的逆序对数。 . . 基本性质 Lemma . . . 对于一个上三角矩阵,它的行列式等于主对角线所有值的乘积。 Proof. 根据行列式定义,要使 a n,p n neq , p n 只能取 n ...
2021-08-01 15:42 1 121 推荐指数:
高斯消元 高斯消元是对矩阵行化简的算法,可以化成阶梯型或者简化阶梯型。《线性代数及其应用》给出的步骤如下: 选取最左边的非零列; 在该列中任意选取一个非零元素,通过对换变换将该行移到最上面; 通过倍加变换将下面的行的该列元素全部变成 \(0\); 暂时不管该行(即第一 ...
目录: 10线性代数相关 10.1图矩阵 ...
这一篇文章和大家聊聊向量。 向量与平面 向量这个概念我们在高中就接触到了,它既指一个点在空间中的坐标,也表示一个有向线段,如果我们加入复数概念的话,它还能表示一个数。在线性代数当中,向量就是指的n个有次序的数\(a_1, a_2, \cdots, a_n\)组成的数组。 向量可以写成 ...
线性方程组: 包含变量x1,x2,……,xn的线性方程是形如 a1x2 +a2x2+...+a3x3 = b 的方程,其中b与系数a1 ,a2 ,…… ,an是实数或者复数,通常是已知数,下标n可以是任意正整数。 线性方程组的解有下列三种情况: ①无解 ...
一、行列式性质 二、行列式的运算 1、 2、 3、 4、代数余子式 5、 6、多个A或M相加减 7、 三、矩阵运算(加减、相乘) 1、矩阵加减 2、矩阵相乘 3、矩阵取绝对值 四、转置、秩 ...
目录 线性方程组 概述 初等行变换与高斯消元 齐次方程组 有限维向量空间 n维向量 向量组 线性相关与无关 向量组的秩 矩阵 矩阵的秩 矩阵的相抵标准型 ...
https://www.bilibili.com/video/av22727915/?p=1 线性代数这门课主要描述这样的问题, 如何解多元一次方程组,即一个线性方程式的系统 解这个系统,就是要回答下面的问题,有没有解,多少解,怎么求解 为什么要研究一次线性 ...
前言 某次模拟赛被矩阵虐哭,补一波线代 这篇博客偏入门,概念较多,算法相关较少 大力膜拜\(3B1B\)的线性代数的本质系列 (参考资料来源,或者干脆叫观影总结吧……) 完全就是观影总结\(qwq\) 记号:不作特殊说明,本文中的大写字母均表示某个矩阵,小写字母均表示某个向量 顺便 ...