参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一、机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对 ...
其实大部分的评价指标比如误识率,拒识率等都是根据TP,FP,FN,TN计算出来的,为了方便起见,把他们的关系表示为下表: 为了更好地理解,我把正负样本记做好人和坏人,那么: TP表示预测为正类的样本中实际也为正样本的个数 本来是好人,预测也是好人 FP表示预测为正类的样本中实际为负样本的个数 把坏人当成了好人 FN表示预测为负类的样本中实际为正样本的个数 把好人当成了坏人 TN表示预测为负类的样本 ...
2021-06-30 15:31 4 306 推荐指数:
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一、机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对 ...
本篇博客的图源来自 zhwhong,转载仅作学习使用! 在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion ...
连接来源:http://mp.weixin.qq.com/s/rXX0Edo8jU3kjUUfJhnyGw 倾向于使用准确率,是因为熟悉它的定义,而不是因为它是评估模型的最佳工具! 精度(查准率)和召回率(查全率)等指标对衡量机器学习的模型性能是非常基本的,特别是在不平衡分布数据集的案例中 ...
倾向于使用准确率,是因为熟悉它的定义,而不是因为它是评估模型的最佳工具! 精度(查准率)和召回率(查全率)等指标对衡量机器学习的模型性能是非常基本的,特别是在不平衡分布数据集的案例中,在周志华教授的「西瓜书」中就特别详细地介绍了这些概念。 什么是分布不平衡 ...
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到)。其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了 ...
五、衡量分类任务的性能指标 3、精准度与召回率 精准率(Precision)指的是模型预测为 Positive 时的预测准确度,其计算公式如下: 召回率(Recall)指的是我们关注的事件发生了,并且模型预测正确了的比值 ...
。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)的工具,它可以帮助人们更好地了解 ...
首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. 我们有一个检测系统,去检测一个肿瘤病人是否为恶性. 那么,对我们的系统来说 ...