1. (一)选取初始数据中的k个对象作为初始的中心,每个对象代表一个聚类中心 (二) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心所对应的类 (三)更新聚类中心:将每个类别中所有对象所对应的均值作为该类 ...
class sklearn.cluster.KMeans n clusters , init k means , n init , max iter , tol . ,precompute distances auto , verbose , random state None, copy x True, n jobs None, algorithm auto 重要参数n clusters n ...
2021-06-28 21:23 0 193 推荐指数:
1. (一)选取初始数据中的k个对象作为初始的中心,每个对象代表一个聚类中心 (二) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心所对应的类 (三)更新聚类中心:将每个类别中所有对象所对应的均值作为该类 ...
一、KMeans算法原理 1.1 KMeans算法关键概念:簇与质心 簇:KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上看是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。 质心:簇中所有数据的均值U通常被认为这个簇的“质心 ...
基本原理 Kmeans是无监督学习的代表,没有所谓的Y。主要目的是分类,分类的依据就是样本之间的距离。比如要分为K类。步骤是: 随机选取K个点。 计算每个点到K个质心的距离,分成K个簇。 计算K个簇样本的平均值作新的质心 循环2、3 位置不变,距离完成 距离 ...
机器学习-文本聚类实例-kmeans ...
背景与原理: 聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习 ...
sklearn cluster KMeans ############ ...