的结果。 神经网络模型的训练过程 神经网络的典型训练过程如下: 定义包含一些可学习的参数( ...
目录 . 准备数据集 . MNIST数据集获取: . 程序部分 . 设计网络结构 . 网络设计 . 程序部分 . 迭代训练 . 测试集预测部分 . 全部代码 . 准备数据集 . MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 本文使用第一种方法获取数据集,并使用 ...
2021-06-21 12:24 0 220 推荐指数:
的结果。 神经网络模型的训练过程 神经网络的典型训练过程如下: 定义包含一些可学习的参数( ...
1.导入必备的包 2.定义mnist数据的格式变换 3.下载数据集,定义数据迭代器 4.定义全连接神经网络(多层感知机)(若是CNN卷积神经网络,则在网络中添加几个卷积层即可 ...
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: 定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层 ...
在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元)——全连接层(500个神经元)——softmax函数,最后得到分类的结果。Flatten层用于将池 ...
https://github.com/jelly-lemon/keras_mnist_0112 用Keras实现MNIST手写数字识别 MNIST手写数字数据集介绍 MNIST手写数字数据集来自美国国家标准与技术研究所,National Institute of Standards ...
是一个非常强大的用来做大规模数值计算的库。其所擅长的任务之一就是实现以及训练深度神经网络。 在博文中 ...
一、构建模型 二、预测结果 可以看到,5个epoch后准确率已经非常高,通过非卷积网络训练模型的准确率低于卷积网络,读者可以自行试验 参考: https://tensorflow.google.cn/tutorials ...
一、MNSIT数据处理 MNSIT是一个非常有名的手写体数字识别数据集。包含60000张训练图片,10000张测试图片。每张图片是28X28的数字。 TonserFlow提供了一个类来处理 MNSIT数据。这个类会自动下载并转化数据结构。 为了方便使用随机梯度下降 ...