Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks 2021.5.12 Under review https://arxiv.org/abs/2105.02358 ...
Beyond Self attention: External Attention using Two Linear Layers for Visual Tasks Abstract 注意力机制,尤其是自注意力 self attention ,在视觉任务的深度特征表征中起着越来越重要的作用。自注意力通过在所有位置上使用成对的affinities计算特征的加权和来更新每个位置上的特征,以捕获单个样 ...
2021-06-17 10:37 0 981 推荐指数:
Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks 2021.5.12 Under review https://arxiv.org/abs/2105.02358 ...
Abstract 在这篇论文中,我们提出了自注意生成对抗网络(SAGAN),它是用于图像生成任务的允许注意力驱动的、长距离依赖的建模。传统的卷积GANs只根据低分辨率图上的空间局部点生成高分辨率细节。在SAGAN中,可以使 ...
一、Attention 1.基本信息 最先出自于Bengio团队一篇论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE ,论文在2015年发表在ICLR。 encoder-decoder模型通常 ...
attention的本质 通过计算Query和一组Key的相似度(或者叫相关性/注意力分布),来给一组Value赋上权重,一般地还会求出这一组Value的加权和。 一个典型的soft attention如下公式所示: 先用Query求出分别和一组Key计算相似度 ...
Self-Attention 之前的RNN输入是难以并行化的,我们下一个输入可能依赖前一个输出,只有知道了前面的输出才能计算后面的输出。 于是提出了 self-attention ,但是这时候 $b^{i}$ 能够并行化计算 论文地址:https://arxiv.org/pdf ...
参考1,参考2 直观理解 先来看一个翻译的例子“I arrived at the bank after crossing the river” 这里面的bank指的是银行还是河岸呢,这就需要我们联 ...
对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。 这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请更新到新版)。你只需要实现三个方法即可: build ...
) 3. self-attention (1)self-attention的计算 (2) sel ...