在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练 ...
BP神经网络:误差反向传播算法公式推导 开端: BP算法提出 . BP神经网络参数符号及激活函数说明 . 网络输出误差 损失函数 定义 . 隐藏层与输出层间的权重更新公式推导 . 输入层与隐藏层间的权重更新公式推导 欢迎转载,转载时请注明出处,谢谢 ...
2021-05-30 00:57 0 183 推荐指数:
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练 ...
误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练。 给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l ...
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数 ...
三、误差逆传播算法(BP) 1、BP算法 多层网络的学习能力比单层感知机强得多。欲训练多层网络,简单感知学习规则显然不够了,需要更强大的学习算法。误差逆传播(errorBackPropagation,简称BP)算法就是其中最杰出的代表。BP算法是迄今最成功的神经网络学习算法 ...
神经网络的前向传播和反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解 ...
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下。 (原文:https://blog.csdn.net/weixin_41718085/ ...
本人弱学校的CS 渣硕一枚,在找工作的时候,发现好多公司都对深度学习有要求,尤其是CNN和RNN,好吧,啥也不说了,拿过来好好看看。以前看习西瓜书的时候神经网络这块就是一个看的很模糊的块,包括台大的视频,上边有AutoEncoder,感觉很乱,所以总和了各种博客,各路大神的知识,总结如果,如有 ...
在讲解误差反向传播算法之前,我们来回顾一下信号在神经网络中的流动过程。请细细体会,当输入向量\(X\)输入感知器时,第一次初始化权重向量\(W\)是随机组成的,也可以理解成我们任意设置了初始值,并和输入做点积运算,然后模型通过权重更新公式来计算新的权重值,更新后的权重值又接着和输入相互作用 ...