第2章 神经网络基础 2.1 机器学习基本概念 2.1.1 机器学习的分类 机器学习有以下几种常见的分类方法: 根据训练数据是否有标签可分为: 监督学习:训练数据中每个样本都有标签,通过标签指导模型进行训练 无监督学习:训练数据完全没有标签,算法从数据中发 ...
第 章 表示学习 在第 章的时候提到了机器学习的第一步就是提取特征。而表示学习就是自动地从数据中学习特征,并直接用于后续的任务。 . 表示学习 . . 表示学习的意义 表示学习要回答 个问题: 如何判断一个表示比另一个表示更好 如何挖掘这些表示 使用什么样的目标去得到一个好的表示 举一个例子就是一个图像,计算机能够得到的知识一个个像素点这样的原始数据,只关注像素点是无法得到一些具体信息的 而人在看 ...
2021-05-23 19:03 2 239 推荐指数:
第2章 神经网络基础 2.1 机器学习基本概念 2.1.1 机器学习的分类 机器学习有以下几种常见的分类方法: 根据训练数据是否有标签可分为: 监督学习:训练数据中每个样本都有标签,通过标签指导模型进行训练 无监督学习:训练数据完全没有标签,算法从数据中发 ...
第3章 卷积神经网络 卷积神经网络CNN是目前应用最广泛的模型之一,具有局部连接、权值共享等特点,是一种深层前馈神经网络。 3.1 卷积与池化 卷积与池化是CNN中的两个核心操作。 3.1.1 信号处理中的卷积 题外话:因为这部分的核心知识应该是属于《信号与系统》这门课程 ...
第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解。 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息。 再具体来看一些区别与联系 ...
前面废点话: 终于!来到了GNN最相关的内容!前面四章来说都是一些预备知识,或者说是介绍性的认识的东西,其实和GNN的关系不是特别大。但从这一章开始一上来就是GNN最核心的东西:图信号处理。这部分其实非常关键,但大部分人学的时候可能都会忽视这一点,认为自己可以直接进入GCN的部分,这是 ...
卷积神经网络(CNN)是一种具有局部连接、权重共享等特性的深层前馈神经网络。 卷积神经网络最早主要是用来处理图像信息。在用全连接前馈网络来处理图像时,会存在以下两个问题: (1)参数太多:随着隐藏层神经元数量的增多,参数的规模也会急剧增加。这会导致整个神经网络的训练效率非常低,也很容易出现 ...
GCN代码实战 书中5.6节的GCN代码实战做的是最经典Cora数据集上的分类,恰当又不恰当的类比Cora之于GNN就相当于MNIST之于机器学习。 有关Cora的介绍网上一搜一大把我就不赘述了,这里说一下Cora这个数据集对应的图是怎么样的。 Cora有2708篇论文,之间有引用关系 ...
依赖属性: 节省实例对内存的开销; 属性值可以通过Binding依赖到其他对象上。 WPF中,依赖对象的概念被DependencyO ...
深入浅出MySQL读书笔记(一) 前言 在某大神童靴的强烈安利下最近阅读了深入浅出MySQL一书,这本书的第三部分,介绍了MySQL数据库的一些优化方法,非常值得一读,推荐大家如果有时间都可以阅读一下,下面博客的主要内容实际是个人的读书笔记。主要内容包括以下方面: 索引相关内容 ...