一、BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0——1区间内(随意通常配合sigmoid函数使用),举例 ...
最近在做交叉熵的魔改,所以需要好好了解下交叉熵,遂有此文。 关于交叉熵的定义请自行百度,相信点进来的你对其基本概念不陌生。 本文将结合PyTorch,介绍离散形式的交叉熵在二分类以及多分类中的应用。注意,本文出现的二分类交叉熵和多分类交叉熵,本质上都是一个东西,二分类交叉熵可以看作是多分类交叉熵的一个特例,只不过在PyTorch中对应方法的实现方式不同 不同之处将在正文详细讲解 。 好了,废话少叙 ...
2021-05-16 02:51 2 20383 推荐指数:
一、BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0——1区间内(随意通常配合sigmoid函数使用),举例 ...
本文目录: 1. sigmoid function (logistic function) 2. 逻辑回归二分类模型 3. 神经网络做二分类问题 4. python实现神经网络做二分类问题 ...
的loss function(损失函数)。 举一个很简单的例子,我们有一个三分类问题,对于一个input \( ...
https://blog.csdn.net/hao5335156/article/details/81029791 ...
MSE是mean squared error的缩写,即平均平方误差,简称均方误差。 MSE是逐元素计算的,计算公式为: 旧版的nn.MSELoss()函数有reduce、size_average两个参数,新版的只有一个reduction参数了,功能是一样的。reduction的意思是维度要不要 ...
loss=torch.nn.MSELoss w=np.array([1.0,2.0,3.0]) w1=np.array([1.0,2.0,2.0]) print(loss(torch.tensor(w),torch.tensor(w1))) 输出值了0.333。 输出表明loss损失函数 ...
均方差损失函数mse_loss()与交叉熵损失函数cross_entropy() 1.均方差损失函数mse_loss() 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N为样本个数,y ...
本篇借鉴了这篇文章,如果有兴趣,大家可以看看:https://blog.csdn.net/geter_CS/article/details/84857220 1、交叉熵:交叉熵主要是用来判定实际的输出与期望的输出的接近程度 2、CrossEntropyLoss()损失函数结合 ...