引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多。当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸。 这种现象并不是由于过拟合导致的,过拟合 ...
引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多。当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸。 这种现象并不是由于过拟合导致的,过拟合 ...
我们都知道随着神经网络深度的加深,训练过程中会很容易产生误差的积累,从而出现梯度爆炸和梯度消散的问题,这是由于随着网络层数的增多,在网络中反向传播的梯度会随着连乘变得不稳定(特别大或特别小),出现最多的还是梯度消散问题。残差网络解决的就是随着深度增加网络性能越来越差的问题 ...
基于上一篇resnet网络结构进行实战。 再来贴一下resnet的基本结构方便与代码进行对比 resnet的自定义类如下: 训练过程如下: 打印网络结构和参数量如下: ...
目录 ResNet原理 ResNet实现 模型创建 数据加载 模型编译 模型训练 测试模型 训练过程 ResNet原理 深层网络在学习任务中取得了超越人眼的准确率,但是,经过实验表明,模型的性能 ...
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人 论文地址:https://arxiv.org ...
目录 一、残差块(Residual Block) 二、 残差网络为什么有用 三、ResNet网络结构 四、代码实现 ...
一直拖着没研究大名鼎鼎的残差网络,最近看YOLO系列,研究到YOLOv3时引入了残差网络的概念,逃不过去了,还是好好研究研究吧~ 一,引言 残差网络是深度学习中的一个重要概念,这篇文章将简单介绍残差网络的思想,并结合文献讨论残差网络有效性的一些可能解释。 以下是本文的概览 ...
一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型 ...