1、信息熵: 一个随机变量 X 可以代表n个随机事件,对应的随机变为X=xi, 那么熵的定义就是 X的加权信息量。 H(x) = p(x1)I(x1)+...+p(xn)I(x1) = p(x1)log2(1/p(x1)) +.....+p ...
什么是机器学习 机器学习:简单来说就是机器通过一系列任务从经验 数据 中学习并且评估效果如何。 机器学习中很多地方都要根据目前的信息做出决策,信息熵主要是反应信息的不确定性,他的一个很重要的作用就是做决策时提供一定的判断依据,比如决策树根据熵来往下设置分支。 信息上实际反应的是一个信息的不确定度。在一个随机事件中,某个事件发生的不确定度越大,熵也越大,那么我们要搞清楚所需要的信息越多。 那么信息熵 ...
2021-04-17 11:24 0 384 推荐指数:
1、信息熵: 一个随机变量 X 可以代表n个随机事件,对应的随机变为X=xi, 那么熵的定义就是 X的加权信息量。 H(x) = p(x1)I(x1)+...+p(xn)I(x1) = p(x1)log2(1/p(x1)) +.....+p ...
一、信息熵 百科:信息熵 衡量信息的不确定度; 1)理论提出 信息论之父 C. E. Shannon 指出:任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关 ...
基尼不纯度Gini Impurity是理解决策树和随机森林分类算法的一个重要概念。我们先看看下面的一个简单例子 - 假如我们有以下的数据集 我们如何选择一个很好的分割值把上面的5个蓝点和5个绿点完美的分开呢?通过观察,我们选择分隔值x=2 如果我们选取x=1.5 ...
总是很容易忘记一些专业术语的公式,可以先理解再去记住 1.信息熵(entropy) 反正就是先计算每一类别的占比,然后再乘法,最后再将每一类加起来 其中distribution()的功能就是计算一个series各类的占比 2.基尼系数(GINI ...
一、信息熵的简介 2.1 信息的概念 信息是用来消除随机不确定性的东西。对于机器学习中的决策树而言,如果待分类的事物集合可以划分为多个类别当中,则第k类的信息可以定义如下: 2.2 信息熵概念 信息熵是用来度量不确定性,当熵越大,k的不确定性越大,反之越小。假定当前样本集合D中第k类 ...
名称 是否良好 是否男 A 1 1 B 1 ...
四、划分选择 1、属性划分选择 构造决策树的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高。 常用属性划分的准则: (1)ID3:信息增益 (2)C4.5:增益率 ...
概念 基尼系数是指国际上通用的、用以衡量一个国家或地区居民收入差距的常用指标。基尼系数介于0-1之间,基尼系数越大,表示不平等程度越高。 通用计算方法 赫希曼根据洛伦茨曲线提出的判断分配平等程度的指标。设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配 ...