强化学习正在改变人类社会的方方面面:基于强化学习的游戏AI 已经在围棋、星际争霸等游戏上战胜人类顶尖选手,基于强化学习的控制算法已经运用于机器人、无人机等设备,基于强化学习的交易算法已经部署在金融平台上并取得超额收益。由于同一套强化学习代码在使用同一套参数的情况下能解决多个看起来毫无关联的问题 ...
本文首发于:行者AI 年Google DeepMind提出了Dueling Network Architectures for Deep Reinforcement Learning,采用优势函数advantage function,使Dueling DQN在只收集一个离散动作的数据后,能够更加准确的去估算Q值,选择更加合适的动作。Double DQN,通过目标Q值选择的动作来选择目标Q值,从而 ...
2021-04-15 17:08 0 413 推荐指数:
强化学习正在改变人类社会的方方面面:基于强化学习的游戏AI 已经在围棋、星际争霸等游戏上战胜人类顶尖选手,基于强化学习的控制算法已经运用于机器人、无人机等设备,基于强化学习的交易算法已经部署在金融平台上并取得超额收益。由于同一套强化学习代码在使用同一套参数的情况下能解决多个看起来毫无关联的问题 ...
强化学习详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10789375.html 目录 1.引言 ...
强化学习策略梯度方法之: REINFORCE 算法 (从原理到代码实现) 2018-04-01 15:15:42 最近在看policy gradient algorithm, 其中一种比较经典的算法当属:REINFORCE 算法,已经广泛的应用于各种计算机视觉任务 ...
一.概述 强化学习是根据奖励信号以改进策略的机器学习方法。策略和奖励是强化学习的核心元素。强化学习试图找到最大化总奖励的策略。强化学习不是监督学习,因为强化学习的学习过程中没有参考答案;强化学习也不是非监督学习,因为强化学习需要利用奖励信号来学习。 强化学习任务常用“智能体/环境”接口 ...
在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用。这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学习原理。 本篇主要参考了AlphaGo Zero的论文, AlphaGo ...
前言 实例参考MorvanZhou/Reinforcement-learning-with-tensorflow, 更改为PyTorch实现,并增加了几处优化。实现效果如下。 其中,红色方块作为探索的智能体,到达黄色圆形块reward=1,到达黑色方块区域reward=-1. 代码 ...
1. 前言 今天要重代码的角度给大家详细介绍下策略迭代的原理和实现方式。本节完整代码GitHub。 我们开始介绍策略迭代前,先介绍一个蛇棋的游戏 它是我们后面学习的环境,介绍下它的规则: 玩家每人拥有一个棋子,出发点在图中标为“1”的格子处。 依次掷骰子,根据骰子的点数将自 ...
1. 前言 上一篇博客我们介绍了价值迭代的原理。这一节我们实现强化学习里面的价值迭代的部分代码(完整代码GitHub)。 2. 价值迭代回顾 我们把注意点放在值函数上,等值函数收敛了,我们的策略也会收敛到最优值。 \[v^{T+1}(s) =max_{a} \sum_{s_{t+1 ...