Learning Meta Face Recognition in Unseen Domains Abstract 人脸识别系统在实际应用中往往面临未知领域,由于其泛化能力较差,导致性能不理想。例如,一个训练良好的webface数据模型不能处理 ...
Cross Domain Similarity Learning for Face Recognition in Unseen Domains Abstract 在相同的训练和测试分布假设下训练的人脸识别模型,当面对未知的变化时,例如在测试时如果出现新的种族或不可预测的个人装扮,往往会出现泛化不良的情况。在本文中,我们引入了一种新的跨域度量学习损失,我们称之为dub Cross Domain T ...
2021-04-19 09:44 0 367 推荐指数:
Learning Meta Face Recognition in Unseen Domains Abstract 人脸识别系统在实际应用中往往面临未知领域,由于其泛化能力较差,导致性能不理想。例如,一个训练良好的webface数据模型不能处理 ...
提出一种成为MFR(Meta Face Recognition)的方法用于解决在未知域模型泛化的paper。如下图所示,左边为四个源域,右边为5个目标域,通过将源域迭代划分成meta-train/meta-test集合可以提升模型的迁移性能,使得在未知域上也会能有较好的结果。 在真实应用中 ...
之前可以先看一下人脸识别(不确定性)- Probabilistic Face Embeddings - 1 - 论文学习 Data Uncertainty Learning in Face Recognition ...
2020 Towards Universal Representation Learning for Deep Face Recognition Abstract ...
CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition https://github.com/HuangYG123/CurricularFace Abstract 作为人脸识别中的一个新兴课题 ...
Cross-Domain Visual Matching,即跨域视觉匹配。所谓跨域,指的是数据的分布不一样,简单点说,就是两种数据「看起来」不像。如下图中,(a)一般的正面照片和各种背景角度下拍摄的照片;(b)摄像头不同角度下拍到的照片;(c)年轻和年老时的人脸照;(d)证件照和草图风格的人脸 ...
When Age-Invariant Face Recognition Meets Face Age Synthesis:A Multi-Task Learning Framework 为了在人脸识别中最小化年龄变化的影响 ...
https://github.com/neverUseThisName/Decorrelated-Adversarial-Learning Decorrelated Adversarial Learning for Age-Invariant Face ...