原文:欧式距离计算+python

...

2021-04-08 13:30 0 326 推荐指数:

查看详情

Python--欧式距离

参考链接:https://www.cnblogs.com/denny402/p/7027954.html 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...

Fri Nov 16 18:49:00 CST 2018 0 8866
相似度计算(余弦距离/欧式距离)

1.余弦距离 适用场景:余弦相似度衡量的是维度间取值方向的一致性,注重维度之间的差异,不注重数值上的差异。 举例:如某T恤从100块降到了50块(A(100,50)),某西装从1000块降到了500块(B(1000,500)),那么T恤和西装都是降价了50%,两者的价格变动趋势一致,可以用余弦 ...

Mon Sep 30 23:21:00 CST 2019 0 792
Pytorch 计算两个张量的欧式距离

1.Pytorch计算公式 a,b为两个张量,且a.size=(B,N,3),b.size()=(B,M,3),计算a中各点到b中各点的距离,返回距离张量c,c.size()=(B,N,M)。不考虑Batch时,可以将理解:c的第i行j列的值表示a中第i个点到b中第j个点的距离 ...

Sat Nov 20 19:19:00 CST 2021 0 3737
余弦距离欧式距离

一、概念 余弦相似度: 余弦距离:1-cos(A,B) 欧式距离: 二、两者之间的关系 当向量的模长是经过归一化的,此时欧氏距离与余弦距离有着单调的关系: 在此场景下,如果选择距离最小(相似度最大)的近邻,那么使用余弦相似度和欧氏距离的结果是相同的。 推导 ...

Fri Jan 04 20:08:00 CST 2019 0 5907
计算两向量的欧式距离,余弦相似度

余弦相似度: 两者相同的地方,就是在机器学习中都可以用来计算相似度,但是两者的含义有很大差别,以我的理解就是: 前者是看成坐标系中两个 点 ,来计算两点之间的 距离 ; 后者是看成坐标系中两个 向量 ,来计算两向量之间的 夹角 。 前者因为是 点 ,所以一般指 ...

Fri Jul 07 01:42:00 CST 2017 0 1587
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM