1,概述 任务型对话系统越来越多的被应用到实际的场景中,例如siri,阿里小密这类的产品。通常任务型对话系统都是基于pipline的方式实现的,具体的流程图如下: 整个pipline由五个模块组成:语音识别;自然语言理解;对话管理;自然语言生成;语音合成。现在越来越多 ...
一.简介 此模型采用bertBERT for Joint Intent Classification and Slot Filling进行意图识别与槽填充。 结构如下: 从上可知: 步骤: 二.程序 bert的简单实现,transformer encoder部分参考https: github.com bentrevett 完整程序见: https: github.com jiangnanboy ...
2021-03-16 21:56 0 1007 推荐指数:
1,概述 任务型对话系统越来越多的被应用到实际的场景中,例如siri,阿里小密这类的产品。通常任务型对话系统都是基于pipline的方式实现的,具体的流程图如下: 整个pipline由五个模块组成:语音识别;自然语言理解;对话管理;自然语言生成;语音合成。现在越来越多 ...
意图识别 基础概念 识别文本中蕴含的主题和意图,是偏向于应用层的自然语言理解任务。篇章级别的意图识别,将其认为是一个模式识别(机器学习)的分类问题,意图分类。 文本类型 常用建模方法 应用举例 短语 ...
我们知道tensorflow的官方bert模型里面包含了很多内容,在进行微调时有许多部分都是我们用不到的,我们需要截取一些用到的部分,使得我们能够更容易进行扩展,接下来本文将进行一一讲解。 1、需要的文件 tokenization.py:用于对数据进行处理,主要是分词 ...
BERT模型是什么 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新点都在pre-train方法上,即用 ...
一、BERT介绍 论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 简介:BERT是基于Transformer的深度双向语言表征模型,基本结构如图所示,本质上是利用 ...
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新 ...
命名实体识别 1. 问题定义 广义的命名实体识别是指识别出待处理文本中三大类(实体类、时间类和数字类)、七小类(人名、机构名、地名、日期、货币和百分比)命名实体。但实际应用中不只是识别上述所说的实体类,还包括其他自定义的实体,如角色、菜名等等。 2. 解决方式 命名实体识别其本质是一个序列 ...
使用visio给图形填充颜色的条件:图形必须是封闭的!!! 但是很多人不明白:我明明画的图形是封闭的啊!可是无法填充颜色!这是因为,你画了一个看上去是封闭的图形,但是VISIO认为你画的不是封闭图形! 怎么办呢?怎么把一个看上去是封闭的图形,变成visio也认为是封闭图形呢? 首先随意画一 ...