今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和 ...
接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布 均匀分布,对离散型分布有二项分布 泊松分布几何分布。 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢 目录 Part :均匀分布的参数估计 Part :次序统计量 Part :均匀分布次 ...
2021-02-01 17:56 3 1309 推荐指数:
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和 ...
前两天对两大连续型分布:均匀分布和指数分布的点估计进行了讨论,导出了我们以后会用到的两大分布:\(\beta\)分布和\(\Gamma\)分布。今天,我们将讨论离散分布中的泊松分布。其实,最简单的离散分布应该是两点分布,但由于在上一篇文章的最后,提到了\(\Gamma\)分布和泊松分布的联系 ...
宋浩《概率论与数理统计》笔记---2.2.3、均匀分布 一、总结 一句话总结: 【n个数的发生概率是相等】:均匀分布所有可能结果的n个数的发生概率是相等的,均匀分布变量X的概率密度函数([概率密度函数]概念是针对连续分布的,求积分即发生概率)为: $$f ( x ) = \frac ...
1. 样本和统计量 1.1 样本和统计量 数理统计讨论的问题不一定都是随机现象,比如人口信息的统计、具体数据的测量,它们的结果都是确定的。但实际问题的操作并不是数学所关心的,剥离问题的外壳,这些问题都可以用随机现象来描述,比如人口信息和测量误差都可以用一个正态分布来近似。建立统计的概率模型 ...
的讨论给出了常用分布的参数点估计,并介绍了两种常用于寻找点估计量的方法——矩法与极大似然法;最后,我们对 ...
上一篇文章提到了一大堆的统计量,但是没有说到它们的用处。今天,我们就会接触到部分估计量,进入到数理统计的第一大范畴——参数估计,同时也会开始使用R语言进行模拟。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part ...
题目描述 设x1,x2,...,xn服从U(0, k)的均匀分布,求k的最大似然估计。 解: 假设随机变量x服从U(0,k)的均匀分布,则其概率密度函数为 似然函数 ...
). Not verycommon for real data. 均匀分布(Uniform Di ...