继续接着上一次https://www.cnblogs.com/webor2006/p/14306045.html的线性代数的学习继续向前,这次则开始要接触线性代数领域更加核心更加关键的内容:什么是线性相关?什么是线程无关?什么是生成空间...下面开始。 线性组合: 先来回忆一下https ...
空间: 在上一次https: www.cnblogs.com webor p .html学习了诸多在线性代数中非常核心的概念 线性组合 线性相关 线性无关 生成空间,空间的基... ,这次则继续学习重要的核心概念 空间 维度 四大子空间 。在之前的学习中用到了很多的 空间 这俩词,比如二维空间 三维空间,n维空间,但是一直还木有严谨的对它进行定义,而数学又是一门非常讲究严谨的学科,所以这次专门针对 ...
2021-01-31 15:34 0 405 推荐指数:
继续接着上一次https://www.cnblogs.com/webor2006/p/14306045.html的线性代数的学习继续向前,这次则开始要接触线性代数领域更加核心更加关键的内容:什么是线性相关?什么是线程无关?什么是生成空间...下面开始。 线性组合: 先来回忆一下https ...
线性代数导论 - #6 向量空间、列空间、Rn与子空间 让我们回想一下#1的内容,当我们在用向量的新视角看待线性方程组时,曾经提到以“向量的图像”作为代数学与几何学桥梁的想法。 而现在,让我们沿着这个想法深入探索下去,将其作为开启线性代数核心学习的钥匙。 引入新概念:向量空间 ...
向量空间(Vector Space) 用表示,表示n为向量空间 向量空间的性质: 向量空间内的向量进行相加相减,乘以或者除以一个标量,或者向量之间的线性组合得到的新向量还是位于该空间中。 非向量空间举例,如二维向量的第一象限空间,取其空间内任意一个向量,如,对该向量进行乘以-1,得到 ...
一:线性方程组 *线性方程组的基本问题: 1.如何判别线性方程组是否有解? 2.当线性方程组有解时,如何判定其解是否唯一? 3.如何求出有解线性方程组的解? 线性方程组的初等变换: 1.互换第i个方程与第j个方程的位置 2. ...
线性代数 线性空间 指向量空间,在线性空间里,定义了向量加法与标量乘法 其中标量乘法对向量加法有分配律 我们称标量乘与向量加为线性组合 线性无关 如果一组向量中不存在一个子集使得其能线性组合出该组向量中的另一向量 线性基 也称线性空间的基底,即最小的一组能线性表示出整个线性空间 ...
A的列空间:column space 设Ax=b,以column picture视角看,每一个x,都是A的列的一种线性组合,每种组合均构成一个b。取遍x 得到的所有的b 构成了A的column space A的零空间:nullspace 设Ax=0,所有的解x 构成的空间 ...
前言 因为博主太菜了所以需要写笔记来加深理解。 感谢队爷 cly 对我的耐心指导。 Part 1 向量 \(\to\) Part 2 矩阵乘法 矩阵其实可以看成若干向量。 矩阵相乘的定义我就不讲了,这个不知道的自己百度一下。 关于这部分,引入一些奇怪的知识(说奇怪是因为 ...
线性代数学习感悟 目录 1 学习路线 1.1 实际学习路线 1.2 优化路线 2 《理解矩阵》读后感 2.1 句子摘抄 2.2 书籍推荐 1.学习路线 1.1实际学习路线 《线性代数》同济五版 + 《张宇带你学》精选书后习题 —>> 线性代数先修课(清华大学 ...