1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
梯度下降法存在的问题 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \(\begin{aligned} \theta_j=\theta_j-\alpha\frac ...
关于机器学习的方法,大多算法都用到了最优化求最优解问题。梯度下降法(gradient descent)是求解无约束最优化问题的一种最常用的方法。它是一种最简单,历史悠长的算法,但是它应用非常广。下面主要在浅易的理解: 一、梯度下降的初步认识 先理解下什么是梯度,用通俗的话来说就是在原变量 ...
1. 前言 今天我们聊一聊机器学习和深度学习里面都至关重要的一个环节,优化损失函数。我们知道一个模型只有损失函数收敛到了一定的值,才有可能会有好的结果,降低损失方式的工作就是优化方法需要做的事。下面会讨论一些常用的优化方法:梯度下降法家族、牛顿法、拟牛顿法、共轭梯度法、Momentum ...
下降法,基于这样的观察:如果实值函数 在点 处可微且有定义,那么函数 在 点沿着梯度相反的方向 ...
本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比是一个下山的过程。可以假设一个场景:一个人上山旅游,天黑了,需要下山(到达山谷 ...