原文:均方误差和交叉熵误差

均方误差个交叉熵误差都是常用的损失函数之一。 首先简要介绍下损失函数: 损失函数是用来表示神经网络性能的 恶劣程度 的指标。即当前神经网络对监督数据在多大程度上不拟合,在多大 程度上不一致。说白了,即所创建的神经网络对输入数据的预测输出值与监督数据 实际输出值 的差距。 均方误差: 上面是计算公式,其中yk表示神经网络的预测输出值,tk表示监督数据,k表示数据的维数。前面的 是为了求导 的时候可以 ...

2020-12-07 16:25 0 443 推荐指数:

查看详情

损失函数(均方误差交叉

记录线性回归问题中常用的均方误差损失函数和分类问题中常用到的交叉损失函数 均方误差损失函数   首 ...

Mon Feb 22 07:32:00 CST 2021 0 517
损失函数——均方误差交叉

1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉) 在理解交叉之前 ...

Mon Jan 27 23:04:00 CST 2020 1 1175
均方误差交叉损失函数比较

一.前言 在做神经网络的训练学习过程中,一开始,经常是喜欢用二次代价函数来做损失函数,因为比较通俗易懂,后面在大部分的项目实践中却很少用到二次代价函数作为损失函数,而是用交叉作为损失函数。为什么?一直在思考这个问题,这两者有什么区别,那个更好?下面通过数学的角度来解释下 ...

Sun Sep 16 03:13:00 CST 2018 0 4629
交叉损失函数和均方误差损失函数

交叉 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉交叉 ...

Fri Apr 20 04:31:00 CST 2018 0 1102
【AI学习总结】均方误差(Mean Square Error,MSE)与交叉(Cross Entropy,CE)损失函数

出发点 对于一个样本,有输入和输出结果,我们的目的是优化训练我们的模型,使得对于样本输入,模型的预测输出尽可能的接近真实输出结果。现在需要一个损失函数来评估预测输出与真实结果的差距。 均方误差 回归问题 样本有若干维,每一维都有一个真实值。我们要将样本的数据通过我们的模型预测也得到同样 ...

Mon Jul 05 08:40:00 CST 2021 0 220
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM