。 从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类。 2、 ...
用LDA模型抽取文本特征,再用线性SVM分类,发现效果很差,F . 。 RandomForestClassifier的表现也比较差: 而随便用一个深度学习模型 textCNN,LSTM Attention 都能达到 . 的F ,而且还不用处理特征 不用分词。 说下具体流程:提取LDA特征时,需要CountVectorizer来先对文本进行向量化,首先需要对文本进行分词,考虑到样本数量较多 搜狐新闻 ...
2020-12-04 20:20 0 604 推荐指数:
。 从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类。 2、 ...
之前做过一些文本挖掘的项目,比如网页分类、微博情感分析、用户评论挖掘,也曾经将libsvm进行包装,写了一个文本分类的开软软件Tmsvm。所以这里将之前做过一些关于文本分类的东西整理总结一下。 1 基础知识 1. 1 样本整理 文本分类属于有监督的学习,所以需要整理样本 ...
以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA)、S ...
####需要先安装几个R包,如果有这些包,可省略安装包的步骤。#install.packages("Rwordseg")#install.packages("tm");#install.package ...
在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA)。注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写 ...
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含 ...
1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...
利用SVM算法进行文本分类 数据集 两位不同作家的作品(金庸&刘慈欣)切分出来的小样本。根据自己构建的词汇表,将样本转化为一个1000维的0-1向量(仅统计词汇是否出现)。再加上一个0-1标记作家 模型 SVM linearKernel 损失函数 优化方法 ...