原文:机器学习之特征选择(Feature Selection)

引言 特征提取和特征选择作为机器学习的重点内容,可以将原始数据转换为更能代表预测模型的潜在问题和特征的过程,可以通过挑选最相关的特征,提取特征和创造特征来实现。要想学习特征选择必然要了解什么是特征提取和特征创造,得到数据的特征之后对特征进行精炼,这时候就要用到特征选择。本文主要介绍特征选择的三种方法:过滤法 filter 包装法 wrapper 和嵌入法 embedded 。 特征提取 Feat ...

2020-12-05 19:21 0 2111 推荐指数:

查看详情

机器学习-特征选择 Feature Selection 研究报告

注: 这个报告是我在10年7月的时候写的(博士一年级),最近整理电脑的时候翻到,当时初学一些KDD上的paper的时候总结的,现在拿出来分享一下。 毕竟是初学的时候写的,有些东西的看法也在变化,看的 ...

Wed Nov 28 05:46:00 CST 2012 7 11744
机器学习-特征选择 Feature Selection 研究报告

原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 机器学习-特征选择 Feature Selection 研究报告 注: 这个报告是我在10年7月的时候写的(博士一年级),最近整理电脑的时候翻到 ...

Sun Nov 09 01:14:00 CST 2014 0 8225
特征选择Feature Selection

://www.cnblogs.com/pinard/p/9032759.html) 以上是从业务角度对特征进行的选择,这也是最重 ...

Sat Feb 29 18:33:00 CST 2020 0 1642
特征选择与稀疏学习Feature Selection and Sparse Learning)

本博客是针对周志华教授所著《机器学习》的“第11章 特征选择与稀疏学习”部分内容的学习笔记。 在实际使用机器学习算法的过程中,往往在特征选择这一块是一个比较让人模棱两可的问题,有时候可能不知道如果想要让当前的模型效果更好,到底是应该加还是减掉一些特征,加又是加哪些,减又是减哪些,所以借着 ...

Sat Jul 07 22:08:00 CST 2018 0 4355
机器学习-特征工程-Feature generation 和 Feature selection

概述:上节咱们说了特征工程是机器学习的一个核心内容。然后咱们已经学习特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧。但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据 ...

Sun Jan 19 20:09:00 CST 2020 1 1302
特征选择 (feature_selection)

特征选择 (feature_selection) 目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance ...

Tue Mar 14 00:45:00 CST 2017 5 76032
机器学习特征选择方法

特征选择是一个重要的数据预处理过程,在现实机器学习任务中,获得数据之后通常先进行特征选择,此后在训练学习器,如下图所示: 进行特征选择有两个很重要的原因: 避免维数灾难:能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少 ...

Tue May 29 08:07:00 CST 2018 2 14184
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM