的机器学习算法。 KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断你的类型。 本质上 ...
常见分类模型与算法 距离判别法,即最近邻算法KNN 贝叶斯分类器 线性判别法,即逻辑回归算法 决策树 支持向量机 神经网络 .KNN分类算法原理及应用 . KNN概述 K最近邻 k Nearest Neighbor,KNN 分类算法是最简单的机器学习算法。 KNN算法的指导思想是 近朱者赤,近墨者黑 ,由你的邻居来推断你的类型。 本质上,KNN算法就是用距离来衡量样本之间的相似度。 . 算法图示 ...
2020-11-17 15:43 0 466 推荐指数:
的机器学习算法。 KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断你的类型。 本质上 ...
1. 集成学习(Ensemble learning) 基本思想:让机器学习效果更好,如果单个分类器表现的很好,那么为什么不适用多个分类器呢? 通过集成学习可以提高整体的泛化能力,但是这种提高是有条件的: (1)分类器之间应该有差异性; (2)每个分类器的精度必须大于0.5 ...
0、序言 最近因为PAC平台自动化的需求,开始探坑推荐系统。这个乍一听去乐趣无穷的课题,对于算法大神们来说是这样的: 而对于刚接触这个领域的我来说,是这样的: 在深坑外围徘徊了一周后,我整理了一些推荐系统的基本概念以及一些有代表性的简单的算法,作为初探 ...
1.Kmeans聚类算法原理 1.1 概述 K-means算法时集简单和经典于一身的基于距离的聚类算法。采用距离作为相似度的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 1.2 算法图示 假设我们的n ...
1.线性回归 简述: 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称 ...
是否在人类监督下进行训练(监督,无监督和强化学习) 在机器学习中,无监督学习就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。 所有的回归算法和分类算法都属于监督学习。回归和分类的算法区别在于输出 ...
机器学习算法可以分为两大类:监督学习与非监督学习。数据集构成:‘监督学习:特征值+目标值;非监督学习:特征值’。 监督学习: 分类:K-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络 回归:线性回归、岭回归 标注:隐马尔可夫模型 注:分类:目标值离散型数据;回归 ...
转自@王萌,有少许修改。 机器学习起源于人工智能,可以赋予计算机以传统编程所无法实现的能力,比如飞行器的自动驾驶、人脸识别、计算机视觉和数据挖掘等。 机器学习的算法很多。很多时候困惑人们的是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面 ...