DDPG原理和算法 DDPG原理和算法 背景描述 DDPG的定义和应用场景 PG ...
本系列是针对于DataWhale学习小组的笔记,从一个对统计学和机器学习理论基础薄弱的初学者角度出发,在小组学习资料的基础上,由浅入深地对知识进行总结和整理,今后有了新的理解可能还会不断完善。由于水平实在有限,不免产生谬误,欢迎读者多多批评指正。如需要转载请与博主联系,谢谢 DDPG算法基本概念 什么是DDPG算法 深度确定性策略梯度 Deep Deterministic Policy Gradi ...
2020-11-08 19:55 0 436 推荐指数:
DDPG原理和算法 DDPG原理和算法 背景描述 DDPG的定义和应用场景 PG ...
本系列是针对于DataWhale学习小组的笔记,从一个对统计学和机器学习理论基础薄弱的初学者角度出发,在小组学习资料的基础上,由浅入深地对知识进行总结和整理,今后有了新的理解可能还会不断完善。由于水平实在有限,不免产生谬误,欢迎读者多多批评指正。如需要转载请与博主联系,谢谢 DQN算法基本原理 ...
本系列是针对于DataWhale学习小组的笔记,从一个对统计学和机器学习理论基础薄弱的初学者角度出发,在小组学习资料的基础上,由浅入深地对知识进行总结和整理,今后有了新的理解可能还会不断完善。由于水平实在有限,不免产生谬误,欢迎读者多多批评指正。如需要转载请与博主联系,谢谢 策略梯度相关概念 ...
/1509.02971.pdf Deep_Deterministic_Policy_Gradient DDPG与AC的区 ...
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题。子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点。本文集中在DRL的model-free方法 ...
一、存在的问题 DQN是一个面向离散控制的算法,即输出的动作是离散的。对应到Atari 游戏中,只需要几个离散的键盘或手柄按键进行控制。 然而在实际中,控制问题则是连续的,高维的,比如一个具有6个关节的机械臂,每个关节的角度输出是连续值,假设范围是0°~360°,归一化后为(-1,1 ...
强化学习: 强化学习作为一门灵感来源于心理学中的行为主义理论的学科,其内容涉及 概率论、统计学、逼近论、凸分析、计算复杂性理论、运筹学 等多学科知识,难度之大,门槛之高,导致其发展速度特别缓慢。 一种解释: 人的一生其实都是不断在强化学习,当你有个动作(action)在某个状态 ...
总结回顾一下近期学习的RL算法,并给部分实现算法整理了流程图、贴了代码。 1. value-based 基于价值的算法 基于价值算法是通过对agent所属的environment的状态或者状态动作对进行评分。对于已经训练好的模型,agent只需要根据价值函数对当前状态选择评分最高的动作即可 ...