1 accuracy_score:分类准确率分数是指所有分类正确的百分比。分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型。常常误导初学者:呵呵。 sklearn.metrics.accuracy_score(y_true ...
.confusion matrix 理论部分见https: www.cnblogs.com cxq p .html label .classification report y true和y pred的shape N, ,如果y pred.shape N, ,先进行此操作torch.argmax pred y,dim 调用结果类似下面 .roc curve, auc 如果最后的y score维度 ...
2020-11-05 21:52 0 1134 推荐指数:
1 accuracy_score:分类准确率分数是指所有分类正确的百分比。分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型。常常误导初学者:呵呵。 sklearn.metrics.accuracy_score(y_true ...
【分类指标】 1.accuracy_score(y_true,y_pre) : 精度 2.auc(x, y, reorder=False) : ROC曲线下的面积;较大的AUC代表了较好的performance。 3.average_precision_score(y_true ...
二者ROC曲线下的面积大小,即比较AUC的大小,AUC值越大,性能越好。 3.sklearn中计算AUC ...
1.accuracy_score(y_true,y_pre):准确率 总的来说就是分类正确的样本占总样本个数的比例,数据越大越好, 但是有一个明显的缺陷,即是当不同类别样本的比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素,就会出现准确率很高,但是auc却很 ...
本文整理了关于机器学习分类问题的评价指标——Confusion Matrix、ROC、AUC的概念以及理解。 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具。其中,矩阵的每一列表示的是模型预测的样本情况;矩阵的每一行表示的样本 ...
:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_we ...
from:http://blog.csdn.net/m0_38061927/article/details/77198990 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None ...
作者:十岁的小男孩 凡心所向,素履可往 目录 监督学习—混淆矩阵 是什么?有什么用?怎么用? 非监督学习—匹配矩阵 混淆矩阵 矩阵每一列代表预测值,每一行代表的 ...