反卷积、上采样、上池化图示理解,如上所示。 目前使用得最多的deconvolution有2种。 方法1:full卷积, 完整的卷积可以使得原来的定义域变大 上图中蓝色为原图像,白色为对应卷积所增加的padding,通常全部为0,绿色是卷积后图片。卷积的滑动是从卷积核右下角与图片左上角重叠 ...
我们可以通过卷积和池化等技术可以将图像进行降维,因此,一些研究人员也想办法恢复原分辨率大小的图像,特别是在语义分割领域应用很成熟。通过对一些资料的学习,简单的整理下三种恢复方法,并进行对比。 上采样 Upsampling 没有学习过程 在FCN U net等网络结构中,涉及到了上采样。上采样概念:上采样指的是任何可以让图像变成更高分辨率的技术。最简单的方式是重采样和插值:将输入图片进行rescal ...
2020-11-02 16:15 0 948 推荐指数:
反卷积、上采样、上池化图示理解,如上所示。 目前使用得最多的deconvolution有2种。 方法1:full卷积, 完整的卷积可以使得原来的定义域变大 上图中蓝色为原图像,白色为对应卷积所增加的padding,通常全部为0,绿色是卷积后图片。卷积的滑动是从卷积核右下角与图片左上角重叠 ...
恢复特征图分辨率的方式对比:反卷积,上池化,上采样 文章目录 1.(反)卷积- (反)卷积原理- (反)卷积过程 利用 CNN 做有关图像的任务时,肯定会遇到 需要从低分辨率图像恢复到到高分辨率图像 的问题。解决方法目前无非就是 1)插值,2)反卷积 一般 上采样 ...
unpooling (摘自https://www.bilibili.com/video/av15889450/?p=33,第30分钟) unpooling有很多种方法,其中一种如下图: De ...
Upsample(上采样,插值) Upsample torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None) Upsamples a given multi-channel 1D ...
1、卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本 ...
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_ ...
反卷积是指,通过测量输出和已知输入重构未知输入的过程。在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程。反卷积有着许多特别的应用,一般可以用于信道均衡、图像恢复、语音识别、地震学、无损探伤等未知输入估计和过程辨识方面的问题。 在神经网络 ...
1.卷积 提取局部特征 2.Relu 留下相关特征,去掉不相关特征,卷积之后的正值越大,说明与卷积核相关性越强,负值越大,不相关性越大。 3.池化 池化的目的: (1)留下最相关的特征,或者说留下最明显的特征。 (2)增大感受野,所谓感受野,即一个像素对应回原图的区域大小 ...