tensorflow 卷积/反卷积-池化/反池化操作详解


  • Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example.

In tf.nn, there are 4 closely related 2d conv functions:

  • tf.nn.conv2d
  • tf.nn.conv2d_backprop_filter
  • tf.nn.conv2d_backprop_input
  • tf.nn.conv2d_transpose
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):
  r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors.

  Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
  and a filter / kernel tensor of shape
  `[filter_height, filter_width, in_channels, out_channels]`, this op
  performs the following:

  1. Flattens the filter to a 2-D matrix with shape
     `[filter_height * filter_width * in_channels, output_channels]`.
  2. Extracts image patches from the input tensor to form a *virtual*
     tensor of shape `[batch, out_height, out_width,
     filter_height * filter_width * in_channels]`.
  3. For each patch, right-multiplies the filter matrix and the image patch
     vector.

  In detail, with the default NHWC format,

      output[b, i, j, k] =
          sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                          filter[di, dj, q, k]

  Must have `strides[0] = strides[3] = 1`.  For the most common case of the same
  horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

Given out = conv2d(x, w) and the output gradient d_out:

  • Use tf.nn.conv2d_backprop_filter to compute the filter gradient d_w
  • Use tf.nn.conv2d_backprop_input to compute the filter gradient d_x
  • tf.nn.conv2d_backprop_input can be implemented by tf.nn.conv2d_transpose
  • All 4 functions above can be implemented by tf.nn.conv2d
  • Actually, use TF's autodiff is the fastest way to compute gradients

Long Answer

Now, let's give an actual working code example of how to use the 4 functions above to compute d_x and d_w given d_out. This shows how conv2dconv2d_backprop_filterconv2d_backprop_input, and conv2d_transpose are related to each other. Please find the full scripts here.

Computing d_x in 4 different ways:

# Method 1: TF's autodiff d_x = tf.gradients(f, x)[0] # Method 2: manually using conv2d d_x_manual = tf.nn.conv2d(input=tf_pad_to_full_conv2d(d_out, w_size), filter=tf_rot180(w), strides=strides, padding='VALID') # Method 3: conv2d_backprop_input d_x_backprop_input = tf.nn.conv2d_backprop_input(input_sizes=x_shape, filter=w, out_backprop=d_out, strides=strides, padding='VALID') # Method 4: conv2d_transpose d_x_transpose = tf.nn.conv2d_transpose(value=d_out, filter=w, output_shape=x_shape, strides=strides, padding='VALID')

Computing d_w in 3 different ways:

# Method 1: TF's autodiff d_w = tf.gradients(f, w)[0] # Method 2: manually using conv2d d_w_manual = tf_NHWC_to_HWIO(tf.nn.conv2d(input=x, filter=tf_NHWC_to_HWIO(d_out), strides=strides, padding='VALID')) # Method 3: conv2d_backprop_filter d_w_backprop_filter = tf.nn.conv2d_backprop_filter(input=x, filter_sizes=w_shape, out_backprop=d_out, strides=strides, padding='VALID')

Please see the full scripts for the implementation of tf_rot180tf_pad_to_full_conv2dtf_NHWC_to_HWIO. In the scripts, we check that the final output values of different methods are the same; a numpy implementation is also available.

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM