输出结果并不是准确的1 1 ,这是因为计算机对于浮点数的处理问题,自带有舍入误差,很难避免,和机器本身有关系。 ...
输出结果并不是准确的1 1 ,这是因为计算机对于浮点数的处理问题,自带有舍入误差,很难避免,和机器本身有关系。 ...
矩阵的特征值和特征向量 定义 对于\(n\)阶方阵\(A\),若存在非零列向量\(x\)和数\(\lambda\)满足\(Ax=\lambda x\),则称\(\lambda\)和\(x\)为一组对应的特征值和特征向量 在确定了特征值之后,可以得到对应\(x\)的无穷多个解 求解特征值 ...
E= eig(A),求解矩阵A的特征值,返回值E为列向量 [V,D] = eig(A),求解矩阵A的特征值D和特征向量V,使其满足AV = VD,D为对角阵 例子: A= 1 0 0 0 2 0 0 0 3 E = eig(A) E= 1 2 3 [V,D ...
2.4矩阵的特征值与特征向量 矩阵特征值的数学定义 求矩阵的特征值与特征向量 特征值的几何意义 1.矩阵特征值的数学定义 设A是n阶方阵,如果存在常数λ和n维非零列向量x,使得等式Ax=λx成立,则称λ为A的特征值,x是对应特征值λ的特征向量。 2.求矩阵的特征值与特征向量 ...
特征值,特征向量: A是n阶方阵, 对于数λ, 若存在非零列向量α,使得Aα=λα, 此时λ就是特征值, α对应于λ的特征向量 λEα - Aα = 0, (λE-A)α=0, 所以(λE-A)x=0 的非零解↔|λE-A|=0 λE-A: 叫做特征矩阵 ...
2.4矩阵的特征值与特征向量 矩阵特征值的数学定义 设A是n阶方阵,如果存在常数λ和n维非零列向量x,使得等式Ax=λx成立,则称λ为A的特征值,x是对应特征值λ的特征向量。 求矩阵的特征值与特征向量 函数调用格式有两种: E = eig(A) : 求矩阵A的全部特征值,构成 ...
矩阵特征值 定义1:设A是n阶矩阵,如果数和n维非零列向量使关系式成立,则称这样的数成为方阵A的特征值,非零向量成为A对应于特征值的特征向量。 说明:1、特征向量,特征值问题是对方阵而言的。 2、n阶方阵A的特征值,就是使齐次线性方程组有非零解的值,即满足方程的都是矩阵A的特征值 ...
目的 求一个实对称矩阵的所有特征值和特征向量。 前置知识 对于一个实对称矩阵\(A\),必存在对角阵\(D\)和正交阵\(U\)满足$$D=U^TAU$$\(D\)的对角线元素为\(A\)的特征值,\(U\)的列向量为\(A\)的特征向量。 定义\(n\)阶旋转矩阵$$G(p,q ...