原文:pytorch反向传播两次,梯度相加,retain_graph=True

pytorch是动态图计算机制,也就是说,每次正向传播时,pytorch会搭建一个计算图,loss.backward 之后,这个计算图的缓存会被释放掉,下一次正向传播时,pytorch会重新搭建一个计算图,如此循环。 在默认情况下,PyTorch每一次搭建的计算图只允许一次反向传播,如果要进行两次反向传播,则需要在第一次反向传播时设置retain graph True,即loss.backwad ...

2020-10-15 10:09 0 2280 推荐指数:

查看详情

pytorch反向传播的loss.backward(retain_graph=True)报错

RNN和LSTM模型中的反向传播方法,在loss.backward()处的问题, 更新完pytorch版本后容易出现问题。 问题1.使用loss.backward()报错 Trying to backward through the graph a second time ...

Tue Nov 02 02:18:00 CST 2021 0 16164
Pytorch-反向传播梯度

1.感知机 单层感知机: 多层感知机: 2.链式法则求梯度 $y1 = w1 * x +b1$ $y2 = w2 * y1 +b2$ $\frac{dy_{2}}{^{dw_{1}}}= \frac{dy_{2}}{^{dy_{1}}}*\frac{dy_ ...

Sat Jul 11 04:42:00 CST 2020 0 1893
PyTorch梯度为什么默认自动累加,在反向传播前要手动将梯度清零?

主要可以通过个角度来说明,但其实表述的意思也是异曲同工 低显存跑大batchsize的角度 这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation) 传统的训练函数,一个batch是这么训练的: 获取loss:输入图像和标签,通过infer计算 ...

Thu Jul 16 21:53:00 CST 2020 0 742
梯度下降法与反向传播

一、梯度下降法 1.什么是梯度下降法 顺着梯度下滑,找到最陡的方向,迈一小步,然后再找当前位,置最陡的下山方向,再迈一小步… 通过比较以上个图,可以会发现,由于初始值的不同,会得到个不同的极小值,所以权重初始值的设定也是十分重要的,通常的把W全部设置为0很容易掉到局部最优 ...

Mon Apr 17 00:06:00 CST 2017 0 14954
Tensorflow--卷积的梯度反向传播

Tensorflow–卷积的梯度反向传播 一.valid卷积的梯度 我们分种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导);第二种情况,在已知张量的情况下,对未知卷积核求导(即对卷积核中每一个变量求导) 1. ...

Thu Jan 31 21:28:00 CST 2019 0 833
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM