交叉熵损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...
均方差损失函数mse loss 与交叉熵损失函数cross entropy .均方差损失函数mse loss 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值。 MSE frac N y y N为样本个数,y 为预测数值,y为正确数值。 代码实例: 输出结果 .交叉熵损失函数cross entropy :相比mse loss 梯度更大了,优化更快了 先引入熵的概念,熵是衡量分布是否稳定的 ...
2020-10-10 17:19 0 824 推荐指数:
交叉熵损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...
损失函数:交叉熵 交叉熵用于比较两个不同概率模型之间的距离。即先把模型转换成熵这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...
交叉熵损失函数 熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...
交叉熵(cross entropy):用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示(这是使用softmax作为激活函数的损失函数表示): (是真实值,是预测值。) 命名说明: pred=F.softmax(logits),logits是softmax ...
交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...
【简介】 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...
交叉熵 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉熵。 交叉 ...