原文:《python深度学习》笔记---5、CNN的多个卷积核为什么能提取到不同的特征

python深度学习 笔记 CNN的多个卷积核为什么能提取到不同的特征 一 总结 一句话总结: 过滤器的权重是随机初始化的 只有卷积核学习到不同的特征,才会减少成本函数 随机初始化的权重可能会确保每个过滤器收敛到成本函数的不同的局部最小值。每个过滤器开始模仿其他过滤器是不可能的,因为这几乎肯定会导致成本函数的增加,梯度下降算法不会让模型朝这个方向发展。 二 CNN的多个卷积核为什么能提取到不同的 ...

2020-10-08 20:44 0 566 推荐指数:

查看详情

深度学习CNN 中 1x1 卷积核的作用

深度学习CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核 ...

Fri Mar 08 05:26:00 CST 2019 0 1021
卷积核特征提取

线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积 ...

Mon Jun 04 03:11:00 CST 2018 1 5612
关于深度学习卷积核操作

,如图所示: 得到的“新照片”的大小为:28*28*6. 其实,每个卷积层之后都会跟一个相应的 ...

Wed May 03 18:19:00 CST 2017 0 15367
深度学习—1*1卷积核

主要作用: 1、跨通道的特征整合 2、特征通道的升维和降维 3、减少卷积核参数(简化模型),对于单通道feature map 用单核卷积即为乘以一个参数,而一般情况都是多核卷积多通道,实现多个feature map的线性组合 4、可以实现与全连接层等价的效果。如在faster-rcnn ...

Wed Jun 20 19:12:00 CST 2018 0 1136
深度学习面试题16:小卷积核级联卷积VS大卷积核卷积

目录   感受野   多个卷积核连续卷积和单个大卷积核卷积的作用相同   小卷积核的优势   参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature ...

Sat Jul 20 01:48:00 CST 2019 0 1398
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM