数据集介绍 鸢尾花数据集一共有150个样本,分为3个类别,每个样本有4个特征,将数据集分为两组,一组作为训练集,另一组作为测试集,其中,测试集和训练集样本数均是75个。为了便于训练,我们将鸢尾花的三种类别数分别设为1、2、3。 数据集下载路径 链接:https://pan.baidu.com ...
作者有话说 最近学习了一下BP神经网络,写篇随笔记录一下得到的一些结果和代码,该随笔会比较简略,对一些简单的细节不加以说明。 目录 BP算法简要推导 应用实例 PYTHON代码 BP算法简要推导 该部分用一个 times times times 的神经网络为例简要说明BP算法的步骤。 向前计算输出 反向传播误差 权重更新 应用实例 鸢尾花数据集一共有 个样本,分为 个类别,每个样本有 个特征, 数 ...
2020-10-07 17:11 0 3406 推荐指数:
数据集介绍 鸢尾花数据集一共有150个样本,分为3个类别,每个样本有4个特征,将数据集分为两组,一组作为训练集,另一组作为测试集,其中,测试集和训练集样本数均是75个。为了便于训练,我们将鸢尾花的三种类别数分别设为1、2、3。 数据集下载路径 链接:https://pan.baidu.com ...
IDE:jupyter 目前我知道的数据集来源有两个,一个是csv数据集文件另一个是从sklearn.datasets导入 1.1 csv格式的数据集(下载地址已上传到博客园----数据集.rar) 1.2 数据集读取 1.3 ...
包含三个花的品种(Iris setosa(山鸢尾),Iris virginica(北美鸢尾),Iris versicolor(变色鸢尾)) 每个品种各50个样 每个样本四个特征参数(萼片长度和宽度、花瓣长度和宽度) scikit-learn自带一些经典的数据集,如iris,digits ...
全连接神经网络BP算法的原理在此不再赘述了,网上有大量的资料可以参考,我就直接贴代码:(用着还行的,帮忙点个推荐啊) ...
IDE:jupyter 数据集请查看:鸢尾花数据集 测试效果预览 成功率96.7% 代码已上传到码云 ...
主要步骤: 1.准备数据 数据集读入 数据集乱序 将数据集分为训练集和测试集 将输入特征和标签配对,每次喂入神经网络一小撮(batch) 2.搭建网络 定义神经网络中所有可训练参数 3.参数优化 反向传播,不断减少loss 4.测试效果 ...
Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于(iris ...