概要 主要介绍左右特征向量以及重要的性质。 左右特征向量 下面给一个简单结论, **证明**:不妨假设 $x$ 是一个单位向量,计算给出 $\mu=\mu x^*x=(x^*A)x=x^*Ax=x^*(Ax)=x^*(\lambda x)=\lambda x^* x ...
设 A 为 n 阶实对称矩阵,则 A 可以分解为 A Q Lambda Q T ,其中 Q q ,q ,...,q n , q i 为 A 的特征向量且 QQ T I , Lambda diag lambda , lambda ,..., lambda n , lambda i 为 A 的特征值。 令 P Q T , y Px , 则对于二次型 x T Ax ,有 x T Ax x T Q La ...
2020-10-04 11:43 0 421 推荐指数:
概要 主要介绍左右特征向量以及重要的性质。 左右特征向量 下面给一个简单结论, **证明**:不妨假设 $x$ 是一个单位向量,计算给出 $\mu=\mu x^*x=(x^*A)x=x^*Ax=x^*(Ax)=x^*(\lambda x)=\lambda x^* x ...
特征值是线性代数中一个十分重要且有用的内容,其用途并不仅仅在于解线代期末试卷上的一道道题,而更在于每根被拨动的吉他弦上,在于搜索引擎的网页分级算法和潜语义索引里,在于生物学上对种群变迁的研究中,在于 数字位图的压缩处理里……在后续的研究中,我们将揭开这些应用场景的面纱,逐渐体会特征值的强大 ...
-对于正定的对称矩阵,奇异值等于特征值,奇异向量等于特征向量。在这种情况下用奇异值分解就把特征值和特征向量求出来了。但是只要是方阵,它就有特征值和特征向量,对于一般的方阵,特征值和特征向量怎么求呢(当然我指的是数值求法)?这就要用本文即将介绍的“幂法”。 Power Method幂法 ...
特征分解 1)一般矩阵 特征分解的一般性质: 已知线性无关的向量,一定存在矩阵的逆。 Tip:并非所有的方阵(n×n)都可以被对角化。 2)对称矩阵 性质1:如果一个对称矩阵的特征值都不相同,则其相应的特征向量不仅线性无关,而且所有的特征向量正交(乘积为0)。 性质2:对称矩阵 ...
矩阵的特征值和特征向量 定义 对于\(n\)阶方阵\(A\),若存在非零列向量\(x\)和数\(\lambda\)满足\(Ax=\lambda x\),则称\(\lambda\)和\(x\)为一组对应的特征值和特征向量 在确定了特征值之后,可以得到对应\(x\)的无穷多个解 求解特征 ...
特征向量是一个向量,当在它上面应用线性变换时其方向保持不变。考虑下面的图像,其中三个向量都被展示出来。绿色正方形仅说明施加到这三个向量上的线性变换。 在这种情况下变换仅仅是水平方向乘以因子2和垂直方向乘以因子0.5,使得变换矩阵A定义 ...
大学学习线性代数的时候,特征值(eigenvalue)和特征向量(eigenvector)一直不甚理解,尽管课本上说特征值和特征向量在工程技术领域有着广泛的应用,但是除了知道怎么求解特征值和特征向量之外,对其包含的现实意义知之甚少。毕业五六年后,学习机器学习,用到PCA在进行主成分分析过程中,需要 ...
...