为实践者和研究者提供机器学习可解释性算法的开源 Python 软件包。InterpretML 能提供以下两种 ...
机器学习可解释性分析 可解释性通常是指使用人类可以理解的方式,基于当前的业务,针对模型的结果进行总结分析 一般来说,计算机通常无法解释它自身的预测结果,此时就需要一定的人工参与来完成可解释性工作 目录: 是什么:什么叫可解释性 为什么:为什么要对模型结果进行解释 怎么做:如何有效的进行可解释性工作 是什么 机器学习 介绍可解释性之前,我们先来简单看看什么是机器学习,此处我们主要讨论有监督机器学习, ...
2020-09-30 15:43 1 1208 推荐指数:
为实践者和研究者提供机器学习可解释性算法的开源 Python 软件包。InterpretML 能提供以下两种 ...
深度学习一直被认为是一个黑盒子,但是试图对模型的理解仍然是非常必要的。先从一个例子来说明解释神经网络的重要性:古代一个小镇上的一匹马能够做数学题,比如给它一个题目 2+3 ,它踏马蹄 5 下后就会停下,这匹马被当地称作神马汉斯。后来人们发现,汉斯其实并不会做数学题,它通过观察主人的反应来判断 ...
课程笔记 前言 两种可解释性: 局部解释:为什么这种图是猫? 全局解释:猫是什么样子的? 为什么需要可解释机器学习?(打开黑盒) 一般的提升效果的方法就是一顿暴调参数,可解释性可以帮助我们更好地提升模型性能。 其实人也是个黑盒(这个观点太6了)。 可解释机器学习的目标,不需要 ...
在这里学习的,在此简要做了些笔记。 壹、可解释性概述 1. 可解释性是什么 人类对模型决策/预测结果的理解程度。 对于深度学习而言,可解释性面临两个问题:①为甚会得到该结果?(过程)②为甚结果应该是这个?(结果) 理想状态:通过溯因推理,计算出输出结果,可是实现较好的模型解释性。 衡量一个 ...
1. 可解释性是什么 0x1:广义可解释性 广义上的可解释性指: 比如我们在调试 bug 的时候,需要通过变量审查和日志信息定位到问题出在哪里。 比如在科学研究中面临一个新问题的研究时,我们需要查阅一些资料来了解这个新问题的基本概念和研究现状,以获得对研究方向的正确认识 ...
与模型无关的局部可解释性方法(LIME) 在机器学习模型事后局部可解释性研究中,一种代表性方法是由Marco Tulio Ribeiro等人提出的Local Interpretable Model-Agnostic Explanation(LIME)。 一般地,对于每一个输入实例,LIME ...
一直在关注可解释机器学习领域,因为确实在工作中有许多应用 模型检查,特征重要性是否符合预期和AUC一样重要 模型解释,比起虚无缥缈的模型指标,解释模型学到的规律更能说服业务方 样本解释,为什么这些用户会违约,是否有指标能提前预警? 决策归因,有时模型只是提取pattern的方式 ...