目录 强化学习中的关键概念 游戏案例 策略网络 策略网络的训练 源码实现 效果演示 参考资料 本文不再维护,请移步最新博客: https://zhuanlan.zhihu.com/p/408239932 强化学习中的关键 ...
目录 Policy based方法 vs Value based方法 策略网络 算法总体流程 如何通过对回归任务的优化来更新Q网络 为什么不可以同时更新Q网络和目标网络 为什么要使用带有探索策略的Q函数 探索策略的数学表达 ReplayBuffer的作用 Q值被高估的问题 源码实现 参考资料 DQN是Deep Q Network的缩写,由Google Deep mind 团队提出。 Policy ...
2020-09-30 15:00 0 486 推荐指数:
目录 强化学习中的关键概念 游戏案例 策略网络 策略网络的训练 源码实现 效果演示 参考资料 本文不再维护,请移步最新博客: https://zhuanlan.zhihu.com/p/408239932 强化学习中的关键 ...
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差。今天我们在DDQN的基础上,对经验回放部分的逻辑做优化。对应的算法是Prioritized ...
DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法。主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现。下面给出公式,并定义一个新的变量: \[q(s_t, a_t)=v(s_t)+A(s_t, a_t ...
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性。但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法 ...
Playing Atari with Deep Reinforcement Learning 论文地址 DQN 笔记 这篇文章就是DQN,DRL领域非常重要的一篇文章,也是David Silver大神的工作。文章本身没有什么难度。 文章说了RL和DL 的两个不同之处: DL ...
) A2C损失函数的构建 源码实现 参考资料 在强化学习中,可以分为如下图所示的两种 ...
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN。本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文< ...
1 概述 在之前介绍的几种方法,我们对值函数一直有一个很大的限制,那就是它们需要用表格的形式表示。虽说表格形式对于求解有很大的帮助,但它也有自己的缺点。如果问题的状态和行动的空间非常大,使用表格 ...