一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action ...
目录 强化学习中的关键概念 游戏案例 策略网络 策略网络的训练 源码实现 效果演示 参考资料 本文不再维护,请移步最新博客: https: zhuanlan.zhihu.com p 强化学习中的关键概念 智能体 Agent :也就是我们的机器人,它内部有一个策略网络,策略网络接收一个可观测状态 observation 作为输入,产生一个动作 action 作为输出。 环境 Environment ...
2020-09-26 16:52 0 480 推荐指数:
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action ...
1 算法的优缺点 1.1 优点 在DQN算法中,神经网络输出的是动作的q值,这对于一个agent拥有少数的离散的动作还是可以的。但是如果某个agent的动作是连续的,这无疑对DQN算法是一个 ...
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P。伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际 ...
Gradient),它是Policy Based强化学习方法,基于策略来学习。 本文参考了Sut ...
目录 Policy based方法 vs Value based方法 策略网络 算法总体流程 如何通过对回归任务的优化来更新Q网络 为什么不可以同时更新Q网络和目标网络 为什么要使用带有探索策略的Q函数 探索策略的数学表达 ReplayBuffer ...
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015 ...
【导语】:在深度强化学习第四篇中,讲了Policy Gradient的理论。通过最终推导得到的公式,本文用PyTorch简单实现以下,并且尽可能搞清楚torch.distribution的使用方法。代码参考了LeeDeepRl-Notes中的实现。 1. 复习 \[\theta ...